Tutorials on Rag Techniques

Learn about Rag Techniques from fellow newline community members!

  • React
  • Angular
  • Vue
  • Svelte
  • NextJS
  • Redux
  • Apollo
  • Storybook
  • D3
  • Testing Library
  • JavaScript
  • TypeScript
  • Node.js
  • Deno
  • Rust
  • Python
  • GraphQL
  • React
  • Angular
  • Vue
  • Svelte
  • NextJS
  • Redux
  • Apollo
  • Storybook
  • D3
  • Testing Library
  • JavaScript
  • TypeScript
  • Node.js
  • Deno
  • Rust
  • Python
  • GraphQL
NEW

Top RAG Techniques that Transforms AI with Knowledge graph

Retrieval-Augmented Generation (RAG) efficiently combines retrieval mechanisms with generative models. This approach enhances performance by sourcing external knowledge dynamically, lending a remarkable boost to the AI domain . RAG models integrate external knowledge sources, resulting in improved accuracy. For example, in some applications, accuracy increases by up to 30% . Traditional AI models often rely on static datasets. This poses challenges when addressing queries requiring up-to-date or varied information. Dynamic response can significantly enhance performance. RAG alleviates these limitations by effectively blending retrieval tools with generative modeling. Thus, it facilitates access to real-time, diverse information sets. When a model faces a question, RAG triggers information gathering. It retrieves relevant data from external repositories. This data becomes a foundation for generating responses, ensuring they are informed and current. RAG then integrates this information, creating a response that is not only relevant but also contextually rich. This synthesis of retrieval and generation allows RAG models to outperform traditional methods. By leveraging external knowledge in real time, it enhances AI's adaptability across various tasks. Consequently, applications that demand precise and up-to-date information benefit immensely from such integration. This example demonstrates how to use an external knowledge graph to enhance a basic Retrieval-Augmented Generation (RAG) model.
NEW

Real-Time vs Edge Computing: AI Inference Face-Off

Real-time and edge computing each serve crucial roles in AI inference. Edge computing processes data near its source, which drastically reduces latency . This processing proximity eliminates the need for data to travel long distances, trimming response times to mere milliseconds. Such rapid data handling is indispensable for applications where every millisecond counts, ensuring robust performance in time-sensitive environments. Conversely, real-time computing is defined by its ability to process data instantly . It achieves latencies as low as a few milliseconds, aligning with the demands of systems requiring immediate feedback or action. This capability is vital for operations where delays could compromise functionality or user experience. While both paradigms aim for minimal latency, their approaches differ. Edge computing leverages local data handling, thus offloading the burden from central data centers and making real-time decisions at the source. Real-time computing emphasizes instantaneous processing, crucial for applications needing immediate execution without any delay.

I got a job offer, thanks in a big part to your teaching. They sent a test as part of the interview process, and this was a huge help to implement my own Node server.

This has been a really good investment!

Advance your career with newline Pro.

Only $40 per month for unlimited access to over 60+ books, guides and courses!

Learn More

Enhancing AI Development with Evals in RAG Techniques

Understanding Retrieval-Augmented Generation (RAG) and Its Importance in AI Development In the rapidly evolving field of artificial intelligence, the ability to create models that produce relevant, accurate, and context-aware responses is paramount. One of the advanced techniques gaining prevalence in AI development is Retrieval-Augmented Generation (RAG). This method is particularly valuable for enhancing the capabilities of Large Language Models (LLMs) in providing contextually accurate outputs by integrating external information directly into the generation process. The essence of RAG lies in its dual-phase approach to augmenting language model outputs. Initially, an AI system retrieves pertinent information from vast datasets, beyond what is stored in the model parameters. Next, this data is seamlessly woven into the response generation, effectively extending the model's knowledge base without extensive training on every possible topic . This capability not only increases the factual accuracy of responses but also significantly boosts the model's utility and relevance across diverse applications .