Go to Preview Lesson
Go to Preview Lesson
LESSON 3.8
Cohere Rerank API & SBERT fine-tuning ([sbert.net], Hugging Face)
LESSON 3.9
Hard-negative mining strategies
AI bootcamp 2
MODULE 1
Byte-Level Models & Sampling Decoders
LESSON 1.1
Tokenization deep dive - Byte-level language modeling vs traditional tokenization
LESSON 1.2
State-of-the-art decoders
LESSON 1.3
Mini-lab - Compare decoding methods on a complex prompt
MODULE 2
Markov Chains & Reinforcement Learning Foundations
LESSON 2.1
Markov Decision Processes (MDP) as LLM analogies
LESSON 2.2
Monte Carlo vs Temporal Difference (TD) learning
LESSON 2.3
Q-learning & Policy Gradients (conceptual overview)
LESSON 2.4
RL in decoding, CoT prompting, and feedback loops
MODULE 3
Advanced Retrieval Methods
LESSON 3.1
Cartridge-based retrieval (self-study distillation)
LESSON 3.2
Late interaction methods (ColQwen-Omni, audio+image chunks)
LESSON 3.3
Multi-vector DB vs standard DB
LESSON 3.4
Query routing logic and memory-index hybrids
LESSON 3.5
Contrastive loss vs triplet loss
LESSON 3.6
Tri-encoder vs cross-encoder performance trade-offs
LESSON 3.7
Triplet-loss fundamentals and semi-hard negative mining
LESSON 3.8
Cohere Rerank API & SBERT fine-tuning ([sbert.net], Hugging Face)
LESSON 3.9
Hard-negative mining strategies
Go Pro
Log In
Hard-negative mining strategies
- Implement pipelines that automatically surface confusing negatives