

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-01/post.md)

What is React?

Today, we're starting out at the beginning. Let's look at what
React is and what makes it tick. We'll discuss why we want to
use it.

Over the next 30 days, you'll get a good feel for the various parts of the React
(https://facebook.github.io/react/) web framework and its ecosystem.

Each day in our 30 day adventure will build upon the previous day's materials,
so by the end of the series, you'll not only know the terms, concepts, and
underpinnings of how the framework works, but be able to use React in your
next web application.

Let's get started. We'll start at the very beginning
(https://www.youtube.com/watch?v=1RW3nDRmu6k) as it's a very good
place to start.

React (https://facebook.github.io/react/) is a JavaScript library for building
user interfaces. It is the view layer for web applications.

At the heart of all React applications are components. A component is a self-
contained module that renders some output. We can write interface
elements like a button or an input field as a React component. Components

What is React?

1

https://github.com/fullstackreact/30-days-of-react/blob/master/day-01/post.md
https://facebook.github.io/react/
https://www.youtube.com/watch?v=1RW3nDRmu6k
https://facebook.github.io/react/

are composable. A component might include one or more other components
in its output.

Broadly speaking, to write React apps we write React components that
correspond to various interface elements. We then organize these
components inside higher-level components which define the structure of
our application.

For example, take a form. A form might consist of many interface elements,
like input fields, labels, or buttons. Each element inside the form can be
written as a React component. We'd then write a higher-level component,
the form component itself. The form component would specify the structure
of the form and include each of these interface elements inside of it.

Importantly, each component in a React app abides by strict data
management principles. Complex, interactive user interfaces often involve
complex data and application state. The surface area of React is limited and
aimed at giving us the tools to be able to anticipate how our application will
look with a given set of circumstances. We dig into these principles later in
the course.

React is a JavaScript framework. Using the framework is as simple as
including a JavaScript file in our HTML and using the React exports in our
application's JavaScript.

For instance, the Hello world example of a React website can be as simple as:

Okay, so how do we use it?

2

<html>

<head>

 <meta charset="utf-8">

 <title>Hello world</title>

 <!-- Script tags including React -->

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/react/15.3.1/react.min.js"

></script>

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/react/15.3.1/react-

dom.min.js"></script>

 <script src="https://unpkg.com/babel-standalone@6/babel.min.js">

</script>

</head>

<body>

 <div id="app"></div>

 <script type="text/babel">

 ReactDOM.render(

 <h1>Hello world</h1>,

 document.querySelector('#app')

);

 </script>

</body>

</html>

Although it might look a little scary, the JavaScript code is a single line that
dynamically adds Hello world to the page. Note that we only needed to
include a handful of JavaScript files to get everything working.

Unlike many of its predecessors, React operates not directly on the browser's

Document Object Model (DOM) immediately, but on a virtual DOM. That is,
rather than manipulating the document in a browser after changes to our
data (which can be quite slow) it resolves changes on a DOM built and run
entirely in memory. After the virtual DOM has been updated, React
intelligently determines what changes to make to the actual browser's DOM.

How does it work?

3

The React Virtual DOM (https://facebook.github.io/react/docs/dom-
differences.html) exists entirely in-memory and is a representation of the
web browser's DOM. Because of this, when we write a React component,
we're not writing directly to the DOM, but we're writing a virtual component
that React will turn into the DOM.

In the next article, we'll look at what this means for us as we build our React
components and jump into JSX and writing our first real components.

4

https://facebook.github.io/react/docs/dom-differences.html

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-02/post.md)

What is JSX?

Now that we know what React is, let's take a look at a few terms
and concepts that will come up throughout the rest of the
series.

In our previous article, we looked at what React
(https://facebook.github.io/react/) is and discussed at a high-level how it
works. In this article, we're going to look at one part of the React ecosystem:
ES6 and JSX.

In any cursory search on the Internet looking for React material, no doubt
you have already run into the terms JSX , ES5, and ES6. These opaque
acronyms can get confusing quickly.

ES5 (the ES stands for ECMAScript) is basically "regular JavaScript." The 5th
update to JavaScript, ES5 was finalized in 2009. It has been supported by all
major browsers for several years. Therefore, if you've written or seen any
JavaScript in the recent past, chances are it was ES5.

ES6 is a new version of JavaScript that adds some nice syntactical and
functional additions. It was finalized in 2015. ES6 is almost fully supported
(http://kangax.github.io/compat-table/es6/) by all major browsers. But it

JSX/ES5/ES6 WTF??!

5

https://github.com/fullstackreact/30-days-of-react/blob/master/day-02/post.md
https://facebook.github.io/react/
http://kangax.github.io/compat-table/es6/

will be some time until older versions of web browsers are phased out of use.
For instance, Internet Explorer 11 does not support ES6, but has about 12% of
the browser market share.

In order to reap the benefits of ES6 today, we have to do a few things to get it
to work in as many browsers as we can:

1. We have to transpile our code so that a wider range of browsers
understand our JavaScript. This means converting ES6 JavaScript into
ES5 JavaScript.

2. We have to include a shim or polyfill that provides additional
functionality added in ES6 that a browser may or may not have.

We'll see how we do this a bit later in the series.

Most of the code we'll write in this series will be easily
translatable to ES5. In cases where we use ES6, we'll
introduce the feature at first and then walk through it.

As we'll see, all of our React components have a render function that

specifies what the HTML output of our React component will be. JavaScript
eXtension, or more commonly JSX, is a React extension that allows us to
write JavaScript that looks like HTML.

Although in previous paradigms it was viewed as a bad habit
to include JavaScript and markup in the same place, it turns
out that combining the view with the functionality makes
reasoning about the view straight-forward.

6

To see what this means, imagine we had a React component that renders an
h1 HTML tag. JSX allows us to declare this element in a manner that closely
resembles HTML:

class HelloWorld extends React.Component {

 render() {

 return (

 <h1 className='large'>Hello World</h1>

);

 }

}

The render() function in the HelloWorld component looks like it's returning
HTML, but this is actually JSX. The JSX is translated to regular JavaScript at
runtime. That component, after translation, looks like this:

class HelloWorld extends React.Component {

 render() {

 return (

 React.createElement(

 'h1',

 {className: 'large'},

 'Hello World'

)

);

 }

}

While JSX looks like HTML, it is actually just a terser way to write a
React.createElement() declaration. When a component renders, it outputs a

tree of React elements or a virtual representation of the HTML elements this
component outputs. React will then determine what changes to make to the
actual DOM based on this React element representation. In the case of the
HelloWorld component, the HTML that React writes to the DOM will look
like this:

Hello World

7

<h1 class='large'>Hello World</h1>

The class extends syntax we used in our first React
component is ES6 syntax. It allows us to write objects using a
familiar Object-Oriented style. In ES5, the class syntax
might be translated as:

var HelloWorld = function() {}

Object.extends(HelloWorld, React.Component)

HelloWorld.prototype.render = function() {}

Because JSX is JavaScript, we can't use JavaScript reserved words. This
includes words like class and for .

React gives us the attribute className . We use it in HelloWorld to set the
large class on our h1 tag. There are a few other attributes, such as the for
attribute on a label that React translates into htmlFor as for is also a
reserved word. We'll look at these when we start using them.

If we want to write pure JavaScript instead of rely on a JSX compiler, we can
just write the React.createElement() function and not worry about the layer
of abstraction. But we like JSX. It's especially more readable with complex
components. Consider the following JSX:

<div>

 <h1>Welcome back Ari</h1>

</div>

The JavaScript delivered to the browser will look like this:

8

React.createElement("div", null,

 React.createElement("img", {src: "profile.jpg", alt: "Profile

photo"}),

 React.createElement("h1", null, "Welcome back Ari")

);

Again, while you can skip JSX and write the latter directly, the JSX syntax is
well-suited for representing nested HTML elements.

Now that we understand JSX, we can start writing our first React
components. Join us tomorrow when we jump into our first React app.

9

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-03/post.md)

Our First Components

The first two articles in this series were heavy on discussion. In
today's session, let's dive into some code and write our first
React app.

Let's revisit the "Hello world" app we introduced on day one. Here it is again,
written slightly differently:

10

https://github.com/fullstackreact/30-days-of-react/blob/master/day-03/post.md

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Hello world</title>

 <!-- Script tags including React -->

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/react/15.3.1/react.min.js"

></script>

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/react/15.3.1/react-

dom.min.js"></script>

 <script src="https://unpkg.com/babel-standalone@6/babel.min.js">

</script>

</head>

<body>

 <div id="app"></div>

 <script type="text/babel">

 var app = <h1>Hello world</h1>

 var mountComponent = document.querySelector('#app');

 ReactDOM.render(app, mountComponent);

 </script>

</body>

</html>

We've included the source of React as a <script> tag inside the <head>
element of our page. It's important to place our <script> loading tags before
we start writing our React application otherwise the React and ReactDOM
variables won't be defined in time for us to use them.

Also inside head is a script tag that includes a library, babel-core . But what
is babel-core ?

Hello world

Loading the React library

Babel
11

Yesterday, we talked about ES5 and ES6. We mentioned that support for ES6
is still spotty. In order to use ES6, it's best if we transpile our ES6 JavaScript
into ES5 JavaScript to support more browsers.

Babel is a library for transpiling ES6 to ES5.

Inside body , we have a script body. Inside of script , we define our first
React application. Note that the script tag has a type of text/babel :

<script type="text/babel">

This signals to Babel that we would like it to handle the execution of the
JavaScript inside this script body, this way we can write our React app using
ES6 JavaScript and be assured that Babel will live-transpile its execution in
browsers that only support ES5.

When using the babel-standalone package, we'll get a warning in the
console. This is fine and expected. We'll switch to a precompilation step in
a few days.

We've included the <script /> tag here for ease of use.

Inside the Babel script body, we've defined our first React application. Our
application consists of a single element, the <h1>Hello world</h1> . The call
to ReactDOM.render() actually places our tiny React application on the page.
Without the call to ReactDOM.render() , nothing would render in the DOM.
The first argument to ReactDOM.render() is what to render and the second is
where:

Warning in the console?

The React app

12

ReactDOM.render(<what>, <where>)

We've written a React application. Our "app" is a React element which
represents an h1 tag. But this isn't very interesting. Rich web applications
accept user input, change their shape based on user interaction, and
communicate with web servers. Let's begin touching on this power by
building our first React component.

We mentioned at the beginning of this series that at the heart of all React
applications are components. The best way to understand React components
is to write them. We'll write our React components as ES6 classes.

Let's look at a component we'll call App . Like all other React components, this
ES6 class will extend the React.Component class from the React package:

class App extends React.Component {

 render() {

 return <h1>Hello from our app</h1>

 }

}

All React components require at least a render() function.
This render() function is expected to return a virtual DOM
representation of the browser DOM element(s).

In our index.html , let's replace our JavaScript from before with our new App
component.

Components and more

13

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Hello world</title>

 <!-- Script tags including React -->

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/react/15.3.1/react.min.js"

></script>

 <script

src="https://cdnjs.cloudflare.com/ajax/libs/react/15.3.1/react-

dom.min.js"></script>

 <script src="https://unpkg.com/babel-standalone@6/babel.min.js">

</script>

</head>

<body>

 <div id="app"></div>

 <script type="text/babel">

 class App extends React.Component {

 render() {

 return <h1>Hello from our app</h1>

 }

 }

 </script>

</body>

</html>

However, nothing is going to render on the screen. Do you remember why?

We haven't told React we want to render anything on the screen or where to
render it. We need to use the ReactDOM.render() function again to express to
React what we want rendered and where.

Adding the ReactDOM.render() function will render our application on screen:

var mount = document.querySelector('#app');

ReactDOM.render(<App />, mount);

Hello from our app
14

Notice that we can render our React app using the App class as though it is a
built-in DOM component type (like the <h1 /> and <div /> tags). Here we're
using it as though it's an element with the angle brackets: <App /> .

The idea that our React components act just like any other element on our

page allows us to build a component tree just as if we were creating a native
browser tree.

While we're rendering a React component now, our app still lacks richness or
interactivity. Soon, we'll see how to make React components data-driven and
dynamic.

But first, in the next installment of this series, we'll explore how we can layer
components. Nested components are the foundation of a rich React web
application.

Hello from our app

15

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-04/post.md)

Complex Components

Awesome, we've built our first component. Now let's get a bit
fancier and start building a more complex interface.

In the previous section of 30 Days of React, we started building our first React
component. In this section, we'll continue our work with our App component
and start building a more complex UI.

A common web element we might see is a user timeline. For instance, we
might have an application that shows a history of events happening such as
applications like Facebook and Twitter.

16

https://github.com/fullstackreact/30-days-of-react/blob/master/day-04/post.md

As we're not focusing on CSS
(https://www.w3.org/standards/webdesign/htmlcss) in this course,
we're not covering the CSS specific to build the timeline as you see it on
the screen.

However, we want to make sure the timeline you build looks similar to
ours. If you include the following CSS as a <link /> tag in your code, your
timeline will look similar and will be using the same styling ours is using:

<link

 href="https://cdn.jsdelivr.net/gh/fullstackreact/30-days-of-

react@master/day-04/src/components/Timeline/Timeline.css"

 rel="stylesheet"

 type="text/css"

/>

And make sure to surround your code in a component with the class of
demo (we left it this way purposefully as it's the exact same code we use in
all the demos here). Check out the
https://jsfiddle.net/auser/zwomnfwk/
(https://jsfiddle.net/auser/zwomnfwk/) for a working example.

The entire compiled CSS can be found on the github repository at
https://github.com/fullstackreact/30-days-of-react/blob/master/day-
04/src/components/Timeline/Timeline.css
(https://github.com/fullstackreact/30-days-of-react/blob/master/day-
04/src/components/Timeline/Timeline.css).

In addition, in order to make the timeline look exactly like the way ours
does on the site, you'll need to include font-awesome
(http://fontawesome.io/) in your web application. There are multiple
ways to handle this. The simplest way is to include the link styles:

Styles

17

https://www.w3.org/standards/webdesign/htmlcss
https://jsfiddle.net/auser/zwomnfwk/
https://github.com/fullstackreact/30-days-of-react/blob/master/day-04/src/components/Timeline/Timeline.css
http://fontawesome.io/

<link

 href="https://maxcdn.bootstrapcdn.com/font-

awesome/4.7.0/css/font-awesome.min.css"

 rel="stylesheet"

 type="text/css"

/>

All the code for the examples on the page is available at the github repo
(at https://github.com/fullstackreact/30-days-of-react)
(https://github.com/fullstackreact/30-days-of-react).

We could build this entire UI in a single component. However, building an
entire application in a single component is not a great idea as it can grow
huge, complex, and difficult to test.

18

https://github.com/fullstackreact/30-days-of-react

class Timeline extends React.Component {

 render() {

 return (

 <div className="notificationsFrame">

 <div className="panel">

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 Timeline

 <input

 type="text"

 className="searchInput"

 placeholder="Search ..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

 <div className="content">

 <div className="line"></div>

 <div className="item">

 <div className="avatar">

 <img

 alt='doug'

 src="http://www.croop.cl/UI/twitter/images/doug.jpg"

/>

 </div>

 An hour ago

 <p>Ate lunch</p>

 </div>

 <div className="item">

 <div className="avatar">

 <img

19

 alt='doug'

src="http://www.croop.cl/UI/twitter/images/doug.jpg" />

 </div>

 10 am

 <p>Read Day two article</p>

 </div>

 <div className="item">

 <div className="avatar">

 <img

 alt='doug'

src="http://www.croop.cl/UI/twitter/images/doug.jpg" />

 </div>

 10 am

 <p>Lorem Ipsum is simply dummy text of the printing and

typesetting industry.</p>

 </div>

 <div className="item">

 <div className="avatar">

 <img

 alt='doug'

src="http://www.croop.cl/UI/twitter/images/doug.jpg" />

 </div>

 2:21 pm

 <p>Lorem Ipsum has been the industry's standard dummy

text ever since the 1500s, when an unknown printer took a galley of

type and scrambled it to make a type specimen book.</p>

 </div>

 </div>

 </div>

 </div>

)

 }

}

20

Rather than build this in a single component, let's break it down into multiple
components.

Looking at this component, there are 2 separate parts to the larger
component as a whole:

1. The title bar
2. The content

Breaking it down

An hour ago

Ate lunch

10 am

Read Day two article

10 am

Lorem Ipsum is simply dummy text of the printing and
typesetting industry.

2:21 pm

Lorem Ipsum has been the industry's standard dummy
text ever since the 1500s, when an unknown printer
took a galley of type and scrambled it to make a type
specimen book.

Timeline

21

We can chop up the content part of the component into individual places of
concern. There are 3 different item components inside the content part.

22

If we wanted to go one step further, we could even break
down the title bar into 3 component parts, the menu button,
the title, and the search icon. We could dive even further into
each one of those if we needed to.

Deciding how deep to split your components is more of an art than a
science and is a skill you'll develop with experience.

In any case, it's usually a good idea to start looking at applications using the
idea of components. By breaking our app down into components it becomes
easier to test and easier to keep track of what functionality goes where.

To build our notifications app, let's start by building the container to hold the
entire app. Our container is simply going to be a wrapper for the other two
components.

None of these components will require special functionality (yet), so they will
look similar to our HelloWorld component in that it's just a component with
a single render function.

Let's build a wrapper component we'll call App that might look similar to this:

class App extends React.Component {

 render() {

 return (

 <div className="notificationsFrame">

 <div className="panel">{/* content goes here */}</div>

 </div>

);

 }

}

The container component

23

Notice that we use the attribute called className in React
instead of the HTML version of class . Remember that we're
not writing to the DOM directly and thus not writing HTML,
but JSX (which is just JavaScript).

The reason we use className is because class is a reserved word in
JavaScript. If we use class , we'll get an error in our console.

When a component is nested inside another component, it's called a child
component. A component can have multiple children components. The
component that uses a child component is then called it's parent component.

With the wrapper component defined, we can build our title and content
components by, essentially, grabbing the source from our original design and
putting the source file into each component.

For instance, the header component looks like this, with a container element
<div className="header"> , the menu icon, a title, and the search bar:

Child components

24

class Header extends React.Component {

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 Timeline

 <input type="text" className="searchInput" placeholder="Search

..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

);

 }

}

And finally, we can write the Content component with timeline items. Each
timeline item is wrapped in a single component, has an avatar associated
with it, a timestamp, and some text.

Timeline

25

class Content extends React.Component {

 render() {

 return (

 <div className="content">

 <div className="line"></div>

 {/* Timeline item */}

 <div className="item">

 <div className="avatar">

 <img

 alt="Doug"

 src="http://www.croop.cl/UI/twitter/images/doug.jpg"

 />

 Doug

 </div>

 An hour ago

 <p>Ate lunch</p>

 <div className="commentCount">2</div>

 </div>

 {/* ... */}

 </div>

);

 }

}

26

In order to write a comment in a React component, we have
to place it in the brackets as a multi-line comment in
JavaScript.

Unlike the HTML comment that looks like this:

<!-- this is a comment in HTML -->

the React version of the comment must be in brackets:

{/* This is a comment in React */}

Now that we have our two children components, we can set the Header and
the Content components to be children of the App component. Our App
component can then use these components as if they are HTML elements
built-in to the browser. Our new App component, with a header and content
now looks like:

class App extends React.Component {

 render() {

 return (

 <div className="notificationsFrame">

 <div className="panel">

 <Header />

 <Content />

 </div>

 </div>

);

 }

}

Putting it all together

27

Note!

Don't forget to call ReactDOM.render to place your app on the page

var mountComponent = document.querySelector("#app");

ReactDOM.render(<App />, mountComponent);

With this knowledge, we now have the ability to write multiple components
and we can start to build more complex applications.

However, you may notice that this app does not have any user interaction nor
custom data. In fact, as it stands right now our React application isn't that
much easier to build than straight, no-frills HTML.

In the next section, we'll look how to make our component more dynamic
and become data-driven with React.

An hour ago

Ate lunch
Doug 2

Timeline

28

29

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-05/post.md)

Data-Driven

Hard-coding data in our applications isn't exactly ideal. Today,
we'll set up our components to be driven by data to them access
to external data.

Through this point, we've written our first components and set them up in a
child/parent relationship. However, we haven't yet tied any data to our React
components. Although it's a more pleasant experience (in our opinion)
writing a website in React, we haven't taken advantage of the power of React
to display any dynamic data.

Let's change that today.

Recall, yesterday we built the beginning of our timeline component that
includes a header and an activity list:

Going data-driven

An hour ago

Ate lunch

10 am

Timeline

30

https://github.com/fullstackreact/30-days-of-react/blob/master/day-05/post.md

We broke down our demo into components and ended up building three
separate components with static JSX templates. It's not very convenient to
have to update our component's template everytime we have a change in our
website's data.

Instead, let's give the components data to use to display. Let's start with the
<Header /> component. As it stands right now, the <Header /> component
only shows the title of the element as Timeline . It's a nice element and it
would be nice to be able to reuse it in other parts of our page, but the title of
Timeline doesn't make sense for every use.

Let's tell React that we want to be able to set the title to something else.

React allows us to send data to a component in the same syntax as HTML,
using attributes or properties on a component. This is akin to passing the src
attribute to an image tag. We can think about the property of the
tag as a prop we're setting on a component called img .

Introducing props

Read Day two article

10 am

Lorem Ipsum is simply dummy text of the printing and
typesetting industry.

2:21 pm

Lorem Ipsum has been the industry's standard dummy
text ever since the 1500s, when an unknown printer
took a galley of type and scrambled it to make a type
specimen book.

31

We can access these properties inside a component as this.props . Let's see
props in action.

Recall, we defined the <Header /> component as:

class Header extends React.Component {

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 Timeline

 <input

 type="text"

 className="searchInput"

 placeholder="Search ..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

)

 }

}

When we use the <Header /> component, we placed it in our <App />
component as like so:

<Header />

32

We can pass in our title as a prop as an attribute on the <Header /> by
updating the usage of the component setting the attribute called title to
some string, like so:

<Header title="Timeline" />

Inside of our component, we can access this title prop from the
this.props property in the Header class. Instead of setting the title statically
as Timeline in the template, we can replace it with the property passed in.

Timeline

33

class Header extends React.Component {

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <input

 type="text"

 className="searchInput"

 placeholder="Search ..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

)

 }

}

We've also updated the code slightly to get closer to what our
final <Header /> code will look like, including adding a
searchIcon and a few elements to style the menuIcon .

Now our <Header /> component will display the string we pass in as the
title when we call the component. For instance, calling our <Header />
component four times like so:

34

<Header title="Timeline" />

<Header title="Profile" />

<Header title="Settings" />

<Header title="Chat" />

Results in four <Header /> components to mount like so:

Pretty nifty, ey? Now we can reuse the <Header /> component with a
dynamic title property.

We can pass in more than just strings in a component. We can pass in
numbers, strings, all sorts of objects, and even functions! We'll talk more
about how to define these different properties so we can build a component
api later.

Instead of statically setting the content and date let's take the Content
component and set the timeline content by a data variable instead of by text.
Just like we can do with HTML components, we can pass multiple props into
a component.

Recall, yesterday we defined our Content container like this:

Timeline

Profile

Settings

Chat

35

class Content extends React.Component {

 render() {

 return (

 <div className="content">

 <div className="line"></div>

 {/* Timeline item */}

 <div className="item">

 <div className="avatar">

 <img src="http://www.croop.cl/UI/twitter/images/doug.jpg"

/>

 Doug

 </div>

 An hour ago

 <p>Ate lunch</p>

 <div className="commentCount">

 2

 </div>

 </div>

 {/* ... */}

 </div>

)

 }

}

As we did with title , let's look at what props our Content component
needs:

A user's avatar image
A timestamp of the activity
Text of the activity item
Number of comments

36

Let's say that we have a JavaScript object that represents an activity item. We
will have a few fields, such as a string field (text) and a date object. We might
have some nested objects, like a user and comments . For instance:

{

 timestamp: new Date().getTime(),

 text: "Ate lunch",

 user: {

 id: 1,

 name: 'Nate',

 avatar: "http://www.croop.cl/UI/twitter/images/doug.jpg"

 },

 comments: [

 { from: 'Ari', text: 'Me too!' }

]

}

Just like we passed in a string title to the <Header /> component, we can take
this activity object and pass it right into the Content component. Let's
convert our component to display the details from this activity inside it's
template.

In order to pass a dynamic variable's value into a template, we have to use the
template syntax to render it in our template. For instance:

37

class Content extends React.Component {

 render() {

 const {activity} = this.props; // ES6 destructuring

 return (

 <div className="content">

 <div className="line"></div>

 {/* Timeline item */}

 <div className="item">

 <div className="avatar">

 <img

 alt={activity.text}

 src={activity.user.avatar} />

 {activity.user.name}

 </div>

 {activity.timestamp}

 <p>{activity.text}</p>

 <div className="commentCount">

 {activity.comments.length}

 </div>

 </div>

 </div>

)

 }

}

38

We've use a little bit of ES6 in our class definition on the first
line of the render() function called destructuring. The two
following lines are functionally equivalent:

// these lines do the same thing

const activity = this.props.activity;

const {activity} = this.props;

Destructuring allows us to save on typing and define variables in a
shorter, more compact way.

We can then use this new content by passing in an object as a prop instead of
a hard-coded string. For instance:

<Content activity={moment1} />

Fantastic, now we have our activity item driven by an object. However, you
might have noticed that we would have to implement this multiple times with
different comments. Instead, we could pass an array of objects into a
component.

1582840847478

Ate lunch
Nate 1

39

Let's say we have an object that contains multiple activity items:

const activities = [

 {

 timestamp: new Date().getTime(),

 text: "Ate lunch",

 user: {

 id: 1, name: 'Nate',

 avatar: "http://www.croop.cl/UI/twitter/images/doug.jpg"

 },

 comments: [{ from: 'Ari', text: 'Me too!' }]

 },

 {

 timestamp: new Date().getTime(),

 text: "Woke up early for a beautiful run",

 user: {

 id: 2, name: 'Ari',

 avatar: "http://www.croop.cl/UI/twitter/images/doug.jpg"

 },

 comments: [{ from: 'Nate', text: 'I am so jealous' }]

 },

]

We can rearticulate our usage of <Content /> by passing in multiple activities
instead of just one:

<Content activities={activities} />

However, if we refresh the view nothing will show up! We need to first update
our Content component to accept multiple activities. As we learned about
previously, JSX is really just JavaScript executed by the browser. We can
execute JavaScript functions inside the JSX content as it will just get run by
the browser like the rest of our JavaScript.

Let's move our activity item JSX inside of the function of the map function
that we'll run over for every item.

40

class Content extends React.Component {

 render() {

 const {activities} = this.props; // ES6 destructuring

 return (

 <div className="content">

 <div className="line"></div>

 {/* Timeline item */}

 {activities.map((activity) => {

 return (

 <div className="item">

 <div className="avatar">

 <img

 alt={activity.text}

 src={activity.user.avatar} />

 {activity.user.name}

 </div>

 {activity.timestamp}

 <p>{activity.text}</p>

 <div className="commentCount">

 {activity.comments.length}

 </div>

 </div>

);

 })}

 </div>

)

 }

}

1582840847479

Ate lunch
Nate 1

1582840847479
41

Now we can pass any number of activities to our array and the Content
component will handle it, however if we leave the component right now, then
we'll have a relatively complex component handling both containing and
displaying a list of activities. Leaving it like this really isn't the React way.

Here is where it makes sense to write one more component to contain
displaying a single activity item and then rather than building a complex
Content component, we can move the responsibility. This will also make it
easier to test, add functionality, etc.

Let's update our Content component to display a list of ActivityItem
components (we'll create this next).

ActivityItem

Woke up early for a beautiful runAri 1

42

class Content extends React.Component {

 render() {

 const {activities} = this.props; // ES6 destructuring

 return (

 <div className="content">

 <div className="line"></div>

 {/* Timeline item */}

 {activities.map((activity) => (

 <ActivityItem

 activity={activity} />

))}

 </div>

)

 }

}

Not only is this much simpler and easier to understand, but it makes testing
both components easier.

With our freshly-minted Content component, let's create the ActivityItem
component. Since we already have the view created for the ActivityItem , all
we need to do is copy it from what was our Content component's template as
it's own module.

43

class ActivityItem extends React.Component {

 render() {

 const {activity} = this.props; // ES6 destructuring

 return (

 <div className="item">

 <div className="avatar">

 <img

 alt={activity.text}

 src={activity.user.avatar} />

 {activity.user.name}

 </div>

 {activity.timestamp}

 <p>{activity.text}</p>

 <div className="commentCount">

 {activity.comments.length}

 </div>

 </div>

)

 }

}

1582840847479

Ate lunch
Nate 1

1582840847479

Woke up early for a beautiful run
Ari 1

44

This week we updated our components to be driven by data by using the
React props concept. In the next section, we'll dive into stateful components.

45

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-06/post.md)

State

Today we're getting started on how stateful components work in
React and look at when and why we'll use state.

We've almost made it through the first week of getting up and running on
React. We have worked through JSX, building our first components, setting
up parent-child relationships, and driving our component properties with
React. We have one more major idea we have yet to discuss about React, the
idea of state.

React does not allow us to modify this.props on our components for good
reason. Imagine if we passed in the title prop to the Header component
and the Header component was able to modify it. How do we know what the
title is of the Header component? We set ourselves up for race-conditions,
confusing data state, and it would be an all-around bad idea to modify a
variable passed to a child component by a parent component.

However, sometimes a component needs to be able to update its own state.
For example, setting an active flag or updating a timer on a stopwatch, for
instance.

While it's preferable to use props as much as we can, sometimes we need to
hold on to the state of a component. To handle this, React gives us the ability
to hold state in our components.

The state of things

46

https://github.com/fullstackreact/30-days-of-react/blob/master/day-06/post.md

state in a component is intended to be completely internal to the
Component and its children (i.e. accessed by the component and any
children it used). Similar to how we access props in a component, the state
can be accessed via this.state in a component. Whenever the state changes
(via the this.setState() function), the component will rerender.

For instance, let's say we have a simple clock component that shows the
current time:

Even though this is a simple clock component, it does retain state in that it
needs to know what the current time is to display. Without using state , we
could set a timer and rerender the entire React component, but other
components on the page may not need rerendering... this would become a
headache and slow when we integrate it into a more complex application.

Instead, we can set a timer to call rerender inside the component and change
just the internal state of this component.

Let's take a stab at building this component. First, we'll create the component
we'll call Clock .

Before we get into the state, let's build the component and create the
render() function. We'll need to take into account the number and prepend
a zero (0) to the number if the numbers are smaller than 10 and set the
am/pm appropriately. The end result of the render() function might look
something like this:

4:00:52 pm

47

class Clock extends React.Component {

 render() {

 const currentTime = new Date(),

 hours = currentTime.getHours(),

 minutes = currentTime.getMinutes(),

 seconds = currentTime.getSeconds(),

 ampm = hours >= 12 ? 'pm' : 'am';

 return (

 <div className="clock">

 {

 hours == 0 ? 12 :

 (hours > 12) ?

 hours - 12 : hours

 }:{

 minutes > 9 ? minutes : `0${minutes}`

 }:{

 seconds > 9 ? seconds : `0${seconds}`

 } {ampm}

 </div>

)

 }

}

Alternatively, we could use the short snippet to handle padding the clock
time:

("00" + minutes).slice(-2)

But we've opted to be more clear with the previous code.

If we render our new Clock component, we will only get a time rendered
everytime the component itself rerenders. It's not a very useful clock (yet). In
order to convert our static time display Clock component into a clock that

Alternative padding technique

48

displays the time, we'll need to update the time every second.

In order to do that, we'll need to track the current time in the state of the
component. To do this, we'll need to set an initial state value.

To do so, we'll first create a getTime() function that returns a javascript
object containing hours , minutes , seconds and ampm values. We will call this
function to set our state.

class Clock extends React.Component {

 //...

 getTime() {

 const currentTime = new Date();

 return {

 hours: currentTime.getHours(),

 minutes: currentTime.getMinutes(),

 seconds: currentTime.getSeconds(),

 ampm: currentTime.getHours() >= 12 ? 'pm' : 'am'

 }

 }

 // ...

}

In the ES6 class style, we can set the initial state of the component in the
constructor() by setting this.state to a value (the return value of our
getTime() function).

 constructor(props) {

 super(props);

 this.state = this.getTime();

 }

this.state will now look like the following object

49

{

 hours: 11,

 minutes: 8,

 seconds: 11,

 ampm: "am"

}

The first line of the constructor should always call
super(props) . If you forget this, the component won't like
you very much (i.e. there will be errors).

Now that we have a this.state defined in our Clock component, we can
reference it in the render() function using the this.state . Let's update our
render() function to grab the values from this.state :

class Clock extends React.Component {

 // ...

 render() {

 const {hours, minutes, seconds, ampm} = this.state;

 return (

 <div className="clock">

 {

 hours === 0 ? 12 :

 (hours > 12) ?

 hours - 12 : hours

 }:{

 minutes > 9 ? minutes : `0${minutes}`

 }:{

 seconds > 9 ? seconds : `0${seconds}`

 } {ampm}

 </div>

)

 }

}

50

Instead of working directly with data values, we can now update the state of
the component and separate the render() function from the data
management.

In order to update the state, we'll use a special function called: setState() ,
which will trigger the component to rerender.

We need to call setState() on the this value of the
component as it's a part of the React.Component class we are
subclassing.

In our Clock component, let's use the native setTimeout() JavaScript
function to create a timer to update the this.state object in 1000
milliseconds. We'll place this functionality in a function as we'll want to call
this again.

51

class Clock extends React.Component {

 // ...

 constructor(props) {

 super(props);

 this.state = this.getTime();

 }

 // ...

 componentDidMount() {

 this.setTimer();

 }

 // ...

 setTimer() {

 clearTimeout(this.timeout);

 this.timeout = setTimeout(this.updateClock.bind(this), 1000);

 }

 // ...

 updateClock() {

 this.setState(this.getTime, this.setTimer);

 }

 // ...

}

To start updating the timer immediately after the our
component has been rendered, we call this.setTimer() in a
React component lifecycle method called
componentDidMount .We will get into the lifecycle hooks in the
next section.

In the updateClock() function we'll want to update the state with the new
time. We can now update the state in the updateClock() function:

52

class Clock extends React.Component {

 // ...

 updateClock() {

 this.setState(this.getTime, this.setTimer);

 }

 // ...

}

The component will be mounted on the page and will update the time every
second (approximately every 1000 milliseconds)

Now the component itself might rerender slower than the timeout function
gets called again, which would cause a rerendering bottleneck and needlessly
using up precious battery on mobile devices. Instead of calling the
setTimer() function after we call this.setState() , we can pass a second
argument to the this.setState() function which will be guaranteed to be
called after the state has been updated.

class Clock extends React.Component {

 // ...

 updateClock() {

 const currentTime = new Date();

 this.setState({

 currentTime: currentTime

 }, this.setTimer);

 }

 // ...

}

Here is our full Clock component code.

53

class Clock extends React.Component {

 constructor(props) {

 super(props);

 this.state = this.getTime();

 }

 componentDidMount() {

 this.setTimer();

 }

 setTimer() {

 clearTimeout(this.timeout);

 this.timeout = setTimeout(this.updateClock.bind(this), 1000);

 }

 updateClock() {

 this.setState(this.getTime, this.setTimer);

 }

 getTime() {

 const currentTime = new Date();

 return {

 hours: currentTime.getHours(),

 minutes: currentTime.getMinutes(),

 seconds: currentTime.getSeconds(),

 ampm: currentTime.getHours() >= 12 ? 'pm' : 'am'

 }

 }

 render() {

 const {hours, minutes, seconds, ampm} = this.state;

 return (

 <div className="clock">

 {hours == 0 ? 12 : hours > 12 ? hours - 12 : hours}:

 {minutes > 9 ? minutes : `0${minutes}`}:

 {seconds > 9 ? seconds : `0${seconds}`} {ampm}

 </div>

);

 }

}

54

As we're not focusing on CSS
(https://www.w3.org/standards/webdesign/htmlcss) in this course,
we're not covering the CSS specific to build the clock as you see it on the
screen.

However, we want to make sure the clock you build looks similar to ours.
If you include the following CSS as a <link /> tag in your code, your
clock will look similar and will be using the same styling ours is using:

<link href="https://cdn.jsdelivr.net/gh/fullstackreact/30-days-

of-react@master/day-06/public/Clock.css" rel="stylesheet"

type="text/css" />

When we call this.setState() with an object argument, it will perform
a shallow merge of the data into the object available via this.state and
then will rerender the component.
We generally only want to keep values in our state that we'll use in the
render() function. From the example above with our clock, notice that
we stored the hours , minutes , and seconds in our state. It's usually a

Styles

4:00:52 pm

Some things to keep in mind

55

https://www.w3.org/standards/webdesign/htmlcss

bad idea to store objects or calculations in the state that we don't plan
on using in the render function as it can cause unnecessary rendering
and wasteful CPU cycles.

As we noted at the top of this section, it's preferred to use props when
available not only for performance reasons, but because stateful components
are more difficult to test.

Today, we've updated our components to be stateful and now have a handle
on how to make a component stateful when necessary. Tomorrow we'll dive
into the lifecycle of a component and when/how to interact with the page.

56

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-07/post.md)

Lifecycle Hooks

NOTE: This post is about classic React Lifecycle hooks.
If you're looking to learn about the new Hooks API then
click here (https://www.fullstackreact.com/articles/an-
introduction-to-hooks-in-react/)

Today, we'll look through a few of the most common lifecycle hooks we can
use with React components and we'll discuss why they are useful and when
we should each one.

Congrats! We've made it to the end of the first week on React and we've
already covered so much ground. We just finished working with stateful
components to keep track of a component's internal state. Today, we're going
to pause on implementation and talk a bit about how a component lives in an
application. That is, we'll talk about the component's lifecycle.

As React mounts our application, it gives us some hooks where we can insert
our own functionality at different times in the component's lifecycle. In order
to hook into the lifecycle, we'll need to define functions on our component
which React calls at the appropriate time for each hook. Let's dive into the
first lifecycle hook:

componentWillMount() /
componentDidMount()

57

https://github.com/fullstackreact/30-days-of-react/blob/master/day-07/post.md
https://www.fullstackreact.com/articles/an-introduction-to-hooks-in-react/

When a component is defined on a page in our application, we can't depend
upon it being available in the DOM immediately as we're defining virtual
nodes. Instead, we have to wait until the component itself has actually
mounted in the browser. For functionality that we need to run when it has
been mounted, we get two different hooks (or functions) we can define. One
that is called just before the component is due to be mounted on the page
and one that is called just after the component has been mounted.

Since we're defining virtual representations of nodes in our DOM tree
with React, we're not actually defining DOM nodes. Instead, we're building
up an in-memory view that React maintains and manages for us. When we
talk about mounting, we're talking about the process of converting the
virtual components into actual DOM elements that are placed in the DOM
by React.

This is useful for things such as fetching data to populate the component. For
instance, let's say that we want to use our activity tracker to display github
events, for example. We will want to load these events only when the data
itself is going to be rendered.

Recall we defined our Content component in our activity list:

What does mounting mean?

58

class Content extends React.Component {

 render() {

 const { activities } = this.props; // ES6 destructuring

 return (

 <div className="content">

 <div className="line" />

 {/* Timeline item */}

 {activities.map(activity => (

 <ActivityItem activity={activity} />

))}

 </div>

);

 }

}

Let's update the Content component to make a request to the github.com
events api (https://developer.github.com/v3/activity/events/) and use the
response to display the activities. As such, we'll need to update the state of
the object.

An hour ago

Ate lunch

10 am

Read Day two article

10 am

Lorem Ipsum is simply dummy text of the printing and
typesetting industry.

2:21 pm

Lorem Ipsum has been the industry's standard dummy
text ever since the 1500s, when an unknown printer
took a galley of type and scrambled it to make a type
specimen book.

Timeline

59

https://developer.github.com/v3/activity/events/

As we did yesterday, let's update our component to be stateful by setting
this.state to an object in the constructor

class Content extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 activities: []

 };

 }

 // ...

}

Now, we'll want to make an HTTP request when the component itself is
getting ready to be mounted (or just after it mounts). By defining the function
componentWillMount() (or componentDidMount()) in our component, React
runs the method just before it mounts in the DOM. This is a perfect spot for
us to add a GET request.

Let's update the Content component with the request to the github api.
Since we'll only want to display a small list, let's take the latest four events.

60

We've stored a static JSON file of github data that we'll load
directly from source here (we'll get back to making AJAX
requests in a few days) using promises. For now, let's focus on
how we'll implement updating our component with new data:

class Content extends React.Component {

 // ...

 componentWillMount() {

 this.setState({ activities: data });

 }

 // ...

}

Let's also update our ActivityItem component slightly to
reflect our new activity object structure. We're also using
Moment.js (https://momentjs.com/) library to format the
dates into a human friendly string e.g 30 min ago To include
it in your file, add the following script tag to your document

<script

src="https://unpkg.com/moment@2.24.0/min/moment.min.js">

</script>

61

https://momentjs.com/

class ActivityItem extends React.Component {

 render() {

 const { activity } = this.props;

 return (

 <div className='item'>

 <div className={'avatar'}>

 <img

 alt='avatar'

 src={activity.actor.avatar_url} />

 </div>

 {moment(activity.created_at).fromNow()}

 <p>{activity.actor.display_login} {activity.payload.action}

</p>

 <div className={'right'}>

 {activity.repo.name}

 </div>

 </div>

)

 }

}

Notice that we didn't change anything else from our Content component and
it just works.

3 years ago

vigosan started fullstackreact/react-yelp-clone

3 years ago

caveman started fullstackreact/react-native-�restack

3 years ago

jamesryancooper started fullstackreact/react-native-�restack

3 years ago

element6 started fullstackreact/react-native-oauth
62

Sometimes we'll want to update some data of our component before or after
we change the actual rendering. For instance, let's say we want to call a
function to set up the rendering or call a function set when a component's
props are changed. The componentWillUpdate() method is a reasonable hook
to handle preparing our component for a change (as long as we don't call
this.setState() to handle it as it will cause an infinite loop).

Since we won't really need to handle this in-depth, we won't worry about
setting up an example here, but it's good to know it exists. A more common
lifecycle hook we'll use is the componentWillReceiveProps() hook.

React will call a method when the component is about to receive new props .
This is the first method that will be called when a component is going to
receive a new set of props. Defining this method is a good time to look for
updates to specific props as it gives us an opportunity to calculate changes
and update our component's internal state.

This is the time when we can update our state based on new props.

componentWillUpdate() /
componentDidUpdate()

componentWillReceiveProps()

63

One thing to keep in mind here is that even though the
componentWillReceiveProps() method gets called, the value of
the props may not have changed. It's always a good idea to
check for changes in the prop values.

For instance, let's add a refresh button to our activity list so our users can
request a rerequest of the github events api.

We'll use the componentWillReceiveProps() hook to ask the component to
reload it's data. As our component is stateful, we'll want to refresh this state
with new data, so we can't simply update the props in a component. We can
use the componentWillReceiveProps() method to tell the component we want
a refresh.

Let's add a button on our containing element that passes a requestRefresh
boolean prop to tell the Content component to refresh.

64

class Container extends React.Component {

 constructor(props) {

 super(props);

 this.state = { refreshing: false };

 }

 // Bound to the refresh button

 refresh() {

 this.setState({ refreshing: true });

 }

 // Callback from the `Content` component

 onComponentRefresh() {

 this.setState({ refreshing: false });

 }

 render() {

 const { refreshing } = this.state;

 return (

 <div className="notificationsFrame">

 <div className="panel">

 <Header title="Github activity" />

 {/* refreshing is the component's state */}

 <Content

 onComponentRefresh={this.onComponentRefresh.bind(this)}

 requestRefresh={refreshing}

 fetchData={fetchEvents}

 />

 {/* A container for styling */}

 <Footer>

 <button onClick={this.refresh.bind(this)}>

 <i className="fa fa-refresh" />

 Refresh

 </button>

 </Footer>

 </div>

 </div>

);

 }

}

65

Notice that we have a new element here that displays the children of the
element. This is a pattern which allows us to add a CSS class around some
content.

class Footer extends React.Component {

 render() {

 return <div className="footer">{this.props.children}</div>;

 }

}

Using this new prop (the requestRefresh prop), we can update the
activities from our state object when it changes value.

<Footer />

66

class Content extends React.Component {

 constructor {

 this.state = {

 activities: [],

 loading: false // <~ set loading to false

 };

 }

 // ...

 updateData() {

 this.setState(

 {

 loading: false,

 activities: data.sort(() => 0.5 - Math.random()).slice(0, 4)

 },

 this.props.onComponentRefresh

);

 }

 componentWillReceiveProps(nextProps) {

 // Check to see if the requestRefresh prop has changed

 if (nextProps.requestRefresh === true) {

 this.setState({ loading: true }, this.updateData);

 }

 }

 // ...

}

Let's also update our componentWillMount method to call this.updateData()
instead of this.setState

 class Content extends React.Component {

 // ...

 componentDidMount() {

 this.updateData();

 }

 // ...

 }

67

This demo is using static data from a JSON file and randomly
picking four elements when we refresh. This is set up to
simulate a refresh.

Before the component is unmounted, React will call out to the
componentWillUnmount() callback. This is the time to handle any clean-up
events we might need, such as clearing timeouts, clearing data,

 Refresh

componentWillUnmount()

3 years ago

vigosan started fullstackreact/react-yelp-clone

3 years ago

jamesryancooper started fullstackreact/react-native-�restack

3 years ago

element6 started fullstackreact/react-native-oauth

3 years ago

caveman started fullstackreact/react-native-�restack

Timeline

68

disconnecting websockets, etc.

For instance, with our clock component we worked on last time, we set a
timeout to be called every second. When the component is ready to
unmount, we want to make sure we clear this timeout so our JavaScript
doesn't continue running a timeout for components that don't actually exist.

Recall that our timer component we built looks like this:

class Clock extends React.Component {

 constructor(props) {

 super(props);

 this.state = this.getTime();

 }

 componentDidMount() {

 this.setTimer();

 }

 setTimer() {

 this.timeout = setTimeout(this.updateClock.bind(this), 1000);

 }

 updateClock() {

 this.setState(this.getTime, this.setTimer);

 }

 getTime() {

 const currentTime = new Date();

 return {

 hours: currentTime.getHours(),

 minutes: currentTime.getMinutes(),

 seconds: currentTime.getSeconds(),

 ampm: currentTime.getHours() >= 12 ? "pm" : "am"

 };

 }

 // ...

 render() {}

}

69

When our clock is going to be unmounted, we'll want to clear the timeout we
create in the setTimer() function on the component. Adding the
componentWillUnmount() function takes care of this necessary cleanup.

class Clock extends React.Component {

 // ...

 componentWillUnmount() {

 if (this.timeout) {

 clearTimeout(this.timeout);

 }

 }

 // ...

}

These are a few of the lifecycle hooks we can interact with in the React
framework. We'll be using these a lot as we build our react apps, so it's a good
idea to be familiar with them, that they exist, and how to hook into the life of
a component.

We did introduce one new concept in this post which we glossed over: we
added a callback on a component to be called from the child to it's parent
component. In the next section, we're going to look at how to define and
document the prop API of a component for usage when sharing a component
across teams and an application in general.

4:00:55 pm

70

71

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-08/post.md)

Packaging and PropTypes

We're looking at how to make reusable React components today
so we can share our components across apps and teams.

Phew! We made it to week two (relatively unscathed)! Through this point,
we've talked through most of the basic features of React (props , state , life-
cycle hooks, JSX, etc.).

In this section, we're going to look a bit at annotating and packaging our
components.

You may have noticed we use props quite a bit in our components. For the
most part, we'll expect these to be a particular type or set of types (aka an
object or a string). React provides a method for defining and validating
these types that allow us to easily expose a component API.

Not only is this a good practice for documentation purposes, it's great for
building reusable react components (https://reactjs.org/docs/components-
and-props.html).

The prop-types object exports a bunch of different types which we can use
to define what type a component's prop should be. We can define these using
the propTypes method in the ES6 class-style React prop:

PropTypes

72

https://github.com/fullstackreact/30-days-of-react/blob/master/day-08/post.md
https://reactjs.org/docs/components-and-props.html

class Clock extends React.Component {

 // ...

}

Clock.propTypes = {

 // key is the name of the prop and

 // value is the PropType

}

From within this prop , we can define an object which has the key of a prop
as the name of the prop we are defining and a value defines the type (or
types) it should be defined as.

For instance, the Header component we built a few days ago accepts a a prop
called title and we expect it to be a string. We can define it's type to be a
string as such:

First, we'll need to import the PropTypes object from the
prop-types package using the import keyword again:

import PropTypes from 'prop-types'

You can also use the PropTypes object directly in your browser by adding
the following script tag in your page

<script src="https://unpkg.com/prop-types@15.6/prop-

types.min.js (https://unpkg.com/prop-types@15.6/prop-

types.min.js)"></script>

73

https://unpkg.com/prop-types@15.6/prop-types.min.js

import PropTypes from 'prop-types'

class Header extends React.Component {

 // ...

}

Header.propTypes = {

 title: PropTypes.string

}

React has a lot of types to choose from, exported on the PropTypes object
and even allows for us to define a custom object type. Let's look at an overall
list of available types:

React exposes a few basic types we can use out of the box.

type example class
String 'hello' PropTypes.string

Number 10, 0.1 PropTypes.number

Boolean true / false PropTypes.bool

Function
const say => (msg) => console.log("Hello

world")

PropTypes.func

Symbol Symbol("msg") PropTypes.symbol

Object {name: 'Ari'} PropTypes.object

Anything 'whatever', 10, {}

It's possible to tell React we want it to pass through anything that can be
rendered by using PropTypes.node :

type exampleclass
A rendererable10, 'hello' PropTypes.node

Basic types

74

Clock.propTypes = {

 title: PropTypes.string,

 count: PropTypes.number,

 isOn: PropTypes.bool,

 onDisplay: PropTypes.func,

 symbol: PropTypes.symbol,

 user: PropTypes.object,

 name: PropTypes.node

}

We've already looked at how to communicate from a parent component to a
child component using props . We can communicate from a child component
to a parent component using a function. We'll use this pattern quite often
when we want to manipulate a parent component from a child.

We can pass through iterable collections in our props . We've already seen
how we can do this when we passed through an array with our activities. To
declare a component's proptype as an array, we can use the PropTypes.array
annotation.

We can also require that an array holds only objects of a certain type using
PropTypes.arrayOf([]) .

type example class
Array [] PropTypes.array

Array of numbers [1, 2, 3] PropTypes.arrayOf([type])

Enum ['Red', 'Blue'] PropTypes.oneOf([arr])

It's possible to describe an object that can be one of a few different types as
well using PropTypes.oneOfType([types]) .

Collection types

75

Clock.propTypes = {

 counts: PropTypes.array,

 users: PropTypes.arrayOf(PropTypes.object),

 alarmColor: PropTypes.oneOf(['red', 'blue']),

 description: PropTypes.oneOfType([

 PropTypes.string,

 PropTypes.instanceOf(Title)

]),

}

It's possible to define types that need to be of a certain shape or instance of a
certain class.

type example class
Object {name: 'Ari'} PropTypes.object

Number object {count: 42} PropTypes.objectOf()

Instance new Message() PropTypes.objectOf()

Object shape {name: 'Ari'} PropTypes.shape()

Clock.propTypes = {

 basicObject: PropTypes.object,

 numbers: PropTypes

 .objectOf(PropTypes.numbers),

 messages: PropTypes

 .instanceOf(Message),

 contactList: PropTypes.shape({

 name: PropTypes.string,

 phone: PropTypes.string,

 })

}

Object types

React types

76

We can also pass through React elements from a parent to a child. This is
incredibly useful for building templates and providing customization with the
templates.

type example class
Element <Title /> PropTypes.element

Clock.propTypes = {

 displayEle: PropTypes.element

}

When we use element, React expects that we'll be able to accept a single child
component. That is, we won't be able to pass multiple elements.

// Invalid for elements

<Clock displayElement={

 <div>Name</div>

 <div>Age</div>

}></Clock>

// Valid

<Clock displayElement={

 <div>

 <div>Name</div>

 <div>Age</div>

 </div>

}></Clock>

It's possible to require a prop to be passed to a component by appending any
of the proptype descriptions with .isRequired :

Clock.propTypes = {

 title: PropTypes.name.isRequired,

}

Requiring types

77

Setting a prop as required is very useful for times when the component is
dependent upon a prop to be passed in by it's parent component and won't
work without it.

Finally, it's also possible to pass a function to define custom types. We can do
this for a single prop or to validate arrays. The one requirement for the
custom function is that if the validation does not pass, it expects we'll return
an Error object:

type example class

Custom 'something_crazy'
function(props, propName, componentName)

{}

CustomArray
['something',

'crazy']
PropTypes.arrayOf(function(props, propName,

componentName) {})

UserLink.propTypes = {

 userWithName: (props, propName, componentName) => {

 if (!props[propName] || !props[propName].name) {

 return new Error(

 "Invalid " + propName + ": No name property defined for

component " + componentName

)

 }

 }

}

Sometimes we want to be able to set a default value for a prop. For instance,
our <Header /> component, we built yesterday might not require a title to be
passed. If it's not, we'll still want a title to be rendered, so we can define a
common title instead by setting it's default prop value.

To set a default prop value, we can use the defaultProps object key on the
component.

Custom types

Default props

78

Header.defaultProps = {

 title: 'Github activity'

}

Phew, today we went through a lot of documentation. It's always a good idea
to build our resuable components using the propTypes and defaultProps
attributes of components. Not only will it make it easier to communicate
across developers, it'll be much easier when we return to our components
after leaving them for a few days.

Next, we'll get back to code and start integrating some style into our
components.

79

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-09/post.md)

Styles

No application is complete without style. We'll look at the
different methods we can use to style our components, from
traditional CSS to inline styling.

Through this point, we haven't touched the styling of our components
beyond attaching Cascading StyleSheet (CSS) class names to components.

Today, we'll spend time working through a few ways how to style our React
components to make them look great, yet still keeping our sanity. We'll even
work through making working with CSS a bit easier too!

Let's look at a few of the different ways we can style a component.

1. Cascasding StyleSheets (CSS)
2. Inline styles
3. Styling libraries

Using CSS to style our web applications is a practice we're already familiar
with and is nothing new. If you've ever written a web application before, you
most likely have used/written CSS. In short, CSS is a way for us to add style
to a DOM component outside of the actual markup itself.

CSS

80

https://github.com/fullstackreact/30-days-of-react/blob/master/day-09/post.md

Using CSS alongside React isn't novel. We'll use CSS in React just like we use
CSS when not using React. We'll assign ids/classes to components and use
CSS selectors to target those elements on the page and let the browser
handle the styling.

As an example, let's style our Header component we've been working with a
bit.

Let's say we wanted to turn the header color orange using CSS. We can easily
handle this by adding a stylesheet to our page and targeting the CSS class of
.header in a CSS class.

Recall, the render function of our Header component currently looks like
this:

Orange header

81

class Header extends React.Component {

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <input

 type="text"

 className="searchInput"

 placeholder="Search ..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

)

 }

}

We can target the header by defining the styles for a .header class in a
regular css file. As per-usual, we'll need to make sure we use a <link /> tag
to include the CSS class in our HTML page. Supposing we define our styles in
a file called styles.css in the same directory as the index.html file, this
<link /> tag will look like the following:

<link rel="stylesheet" type="text/css" href="styles.css">

Let's fill in the styles for the Header class names:

82

.demo .notificationsFrame .header {

 background: rgba(251, 202, 43, 1);

}

.demo .notificationsFrame .header .searchIcon,

.demo .notificationsFrame .header .title {

 color: #333333;

}

.demo .notificationsFrame .header .menuIcon .dashTop,

.demo .notificationsFrame .header .menuIcon .dashBottom,

.demo .notificationsFrame .header .menuIcon .circle {

 background-color: #333333;

}

One of the most common complaints about CSS in the first place is the
cascading feature itself. The way CSS works is that it cascades (hence the
name) parent styles to it's children. This is often a cause for bugs as classes
often have common names and it's easy to overwrite class styles for non-
specific classes.

Using our example, the class name of .header isn't very specific. Not only
could the page itself have a header, but content boxes on the page might,
articles, even ads we place on the page might have a class name of .header .

Orange header

83

One way we can avoid this problem is to use something like
css modules (https://glenmaddern.com/articles/css-
modules) to define custom, very unique CSS class names for
us. There is nothing magical about CSS modules other than it
forces our build-tool to define custom CSS class names for us
so we can work with less unique names. We'll look into using
CSS modules a bit later in our workflow.

React provides a not-so-new method for avoiding this problem entirely by
allowing us to define styles inline along with our JSX.

Adding styles to our actual components not only allow us to define the styles
inside our components, but allow us to dynamically define styles based upon
different states of the app.

React gives us a way to define styles using a JavaScript object rather than a
separate CSS file. Let's take our Header component one more time and
instead of using css classes to define the style, let's move it to inline styles.

Defining styles inside a component is easy using the style prop. All DOM
elements inside React accept a style property, which is expected to be an
object with camel-cased keys defining a style name and values which map to
their value.

For example, to add a color style to a <div /> element in JSX, this might
look like:

<div style={{ color: 'blue' }}>

 This text will have the color blue

</div>

Inline styles

84

https://glenmaddern.com/articles/css-modules

Notice that we defined the styles with two braces
surrounding it. As we are passing a JavaScript object within a
template tag, the inner brace is the JS object and the outer is
the template tag.

Another example to possibly make this clearer would be to pass a
JavaScript object defined outside of the JSX, i.e.

render() {

 const divStyle = { color: 'blue' }

 return (<div style={divStyle}>

 This text will have the color blue

 </div>);

}

In any case, as these are JS-defined styles, so we can't use just any ole' css
style name (as background-color would be invalid in JavaScript). Instead,
React requires us to camel-case the style name.

camelCase (https://en.wikipedia.org/wiki/CamelCase) is
writing compound words using a capital letter for every word
with a capital letter except for the first word, like
backgroundColor and linearGradient .

This text will have the color blue

85

https://en.wikipedia.org/wiki/CamelCase

To update our header component to use these styles instead of depending on
a CSS class definition, we can add the className prop along with a style
prop:

86

class Header extends React.Component {

 render() {

 const wrapperStyle = {

 backgroundColor: "rgba(251, 202, 43, 1)"

 };

 const titleStyle = {

 color: "#111111"

 };

 const menuColor = {

 backgroundColor: "#111111"

 };

 return (

 <div style={wrapperStyle} className="header">

 <div className="menuIcon">

 <div className="dashTop" style={menuColor}></div>

 <div className="dashBottom" style={menuColor}></div>

 <div className="circle" style={menuColor}></div>

 </div>

 {this.props.title}

 <input

 type="text"

 className="searchInput"

 placeholder="Search ..."

 />

 <div style={titleStyle} className="fa fa-search searchIcon">

</div>

 </div>

);

 }

}

Our header will be orange again.

87

The React community is a pretty vibrant place (which is one of the reasons it
is a fantastic library to work with). There are a lot of styling libraries we can
use to help us build our styles, such as Radium
(https://formidable.com/open-source/radium/) by Formidable labs.

Most of these libraries are based upon workflows defined by React
developers through working with React.

Radium allows us to define common styles outside of the React component
itself, it auto-vendor prefixes, supports media queries (like :hover and
:active), simplifies inline styling, and kind of a lot more.

We won't dive into Radium in this post as it's more outside the scope of this
series, but knowing other libraries are good to be aware of, especially if
you're looking to extend the definitions of your inline styles.

Now that we know how to style our components, we can make some good
looking ones without too much trouble. In the next section, we'll get right
back to adding user interactivity to our components.

Styling libraries

Orange header

88

https://formidable.com/open-source/radium/

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-10/post.md)

Interactivity

Today we'll walk through how to add interactivity to our
applications to make them engaging and dynamic.

Through this point, we've built our few handful of components without
adding much user interaction. Today, we're going to change that.

The browser is an event-driven application. Everything that a user does in
the browser fires an event, from clicking buttons to even just moving the
mouse. In plain JavaScript, we can listen for these events and attach a
JavaScript function to interact with them.

For instance, we can attach a function to the mousemove browser event with
the JS:

const ele = document.getElementById('mousemove');

ele.innerHTML = 'Move your mouse over this text';

ele.addEventListener('mousemove', function(evt) {

 const { screenX, screenY } = evt;

 ele.innerHTML = '<div>Mouse is at: X: ' +

 screenX + ', Y: ' + screenY +

 '</div>';

})

User interaction

89

https://github.com/fullstackreact/30-days-of-react/blob/master/day-10/post.md

This results in the following functionality:

In React, however we don't have to interact with the browser's event loop in
raw JavaScript as React provides a way for us to handle events using props .

For instance, to listen for the mousemove event from the (rather unimpressive)
demo above in React, we'll set the prop onMouseMove (notice the camelcasing
of the event name).

Move your mouse over this text

90

class MouseMover extends React.Component {

 state = {

 x: 0,

 y: 0

 };

 handleMouseMove = e => {

 this.setState({

 x: e.clientX,

 y: e.clientY

 });

 };

 render() {

 return (

 <div onMouseMove={this.handleMouseMove}>

 {this.state.x || this.state.y

 ? "The mouse is at x: " + this.state.x + ", y: " +

this.state.y

 : "Move the mouse over this box"}

 </div>

);

 }

}

React provides a lot of props we can set to listen for different browser
events, such as click, touch, drag, scroll, selection events, and many more
(see the events (https://facebook.github.io/react/docs/events.html)
documentation for a list of all of them).

The mouse is at x: unde�ned, y: unde�ned

91

https://facebook.github.io/react/docs/events.html

To see some of these in action, the following is a small demo of some of the
props we can pass on our elements. Each text element in the list set the prop
it lists. Try playing around with the list and seeing how the events are called
and handled within the element (all events are set on the text, not the list
item):

We'll be using the onClick prop quite a bit all throughout our apps quite a
bit, so it's a good idea to be familiar with it. In our activity list header, we have
a search icon that we haven't hooked up yet to show a search box.

The interaction we want is to show a search <input /> when our users click
on the search icon. Recall that our Header component is implemented like
this:

 onMouseMove

 onMouseUp

 onMouseDown

 onClick

 onDoubleClick

 onMouseLeave

 onTouchStart

 onTouchEnd

92

class Header extends React.Component {

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <input

 type="text"

 className="searchInput"

 placeholder="Search ..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

)

 }

}

Let's update it a bit so that we can pass dynamic className prop to the
<input /> element

93

class Header extends React.Component {

 render() {

 // Classes to add to the <input /> element

 let searchInputClasses = ["searchInput"];

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <input

 type="text"

 className={searchInputClasses.join(' ')}

 placeholder="Search ..." />

 <div className="fa fa-search searchIcon"></div>

 </div>

)

 }

}

When the user clicks on the <div className="fa fa-search searchIcon">
</div> element, we'll want to run a function to update the state of the
component so the searchInputClasses object gets updated. Using the
onClick handler, this is pretty simple.

Let's make this component stateful (it needs to track if the search field
should be showing or not). We can convert our component to be stateful
using the constructor() function:

94

class Header extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 searchVisible: false

 }

 }

 // ...

}

In JavaScript, the constructor function is a function that runs when an
object is created. It returns a reference to the Object function that
created the instance's prototype .

In plain English, a constructor function is the function that runs when the
JavaScript runtime creates a new object. We'll use the constructor method
to set up instance variables on the object as it runs right when the object
is created.

When using the ES6 class syntax to create an object, we have to call the
super() method before any other method. Calling the super() function
calls the parent class's constructor() function. We'll call it with the same
arguments as the constructor() function of our class is called with.

When the user clicks on the button, we'll want to update the state to say that
the searchVisible flag gets updated. Since we'll want the user to be able to
close/hide the <input /> field after clicking on the search icon for a second
time, we'll toggle the state rather than just set it to true.

Let's create this method to bind our click event:

What is a constructor function?

95

class Header extends React.Component {

 // ...

 showSearch() {

 this.setState({

 searchVisible: !this.state.searchVisible

 })

 }

 // ...

}

Let's add an if statement to update searchInputClasses if
this.state.searchVisible is true

class Header extends React.Component {

 // ...

 render() {

 // ...

 // Update the class array if the state is visible

 if (this.state.searchVisible) {

 searchInputClasses.push("active");

 }

 // ...

 }

}

Finally, we can attach a click handler (using the onClick prop) on the icon
element to call our new showSearch() method. The entire updated source for
our Header component looks like this:

96

class Header extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 searchVisible: false

 }

 }

 // toggle visibility when run on the state

 showSearch() {

 this.setState({

 searchVisible: !this.state.searchVisible

 })

 }

 render() {

 // Classes to add to the <input /> element

 let searchInputClasses = ["searchInput"];

 // Update the class array if the state is visible

 if (this.state.searchVisible) {

 searchInputClasses.push("active");

 }

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <input

 type="text"

 className={searchInputClasses.join(' ')}

 placeholder="Search ..." />

97

 {/* Adding an onClick handler to call the showSearch button

*/}

 <div

 onClick={this.showSearch.bind(this)}

 className="fa fa-search searchIcon"></div>

 </div>

)

 }

}

Try clicking on the search icon and watch the input field appear and
disappear (the animation effect is handled by CSS animations).

Whenever we build a form in React, we'll use the input events offered by
React. Most notably, we'll use the onSubmit() and onChange() props most
often.

Let's update our search box demo to capture the text inside the search field
when it updates. Whenever an <input /> field has the onChange() prop set,
it will call the function every time the field changes. When we click on it and
start typing, the function will be called.

Using this prop, we can capture the value of the field in our state.

Input events

98

Rather than updating our <Header /> component, let's create a new child
component to contain a <form /> element. By moving the form-handling
responsibilities to it's own form, we can simplify the <Header /> code and we
can call up to the parent of the header when our user submits the form (this
is a usual React pattern).

Let's create a new component we'll call SearchForm . This new component is a
stateful component as we'll need to hold on to the value of the search input
(track it as it changes):

class SearchForm extends React.Component {

 // ...

 constructor(props) {

 super(props);

 this.state = {

 searchText: ''

 }

 }

 // ...

}

Now, we already have the HTML for the form written in the <Header />
component, so let's grab that from our Header component and return it from
our SearchForm.render() function:

99

class SearchForm extends React.Component {

 // ...

 render() {

 const { searchVisible } = this.props;

 let searchClasses = ["searchInput"];

 if (searchVisible) {

 searchClasses.push("active");

 }

 return (

 <form>

 <input

 type="search"

 className={searchClasses.join(" ")}

 placeholder="Search ..."

 />

 </form>

);

 }

}

Now that we've moved some code from the Header component to the
SearchForm , let's update its render method to incorporate the SearchForm

100

class Header extends React.Component {

 // ...

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <SearchForm />

 {/* Adding an onClick handler to call the showSearch button

*/}

 <div

 onClick={this.showSearch.bind(this)}

 className="fa fa-search searchIcon"

 ></div>

 </div>

);

 }

}

Notice that we lost the styles on our <input /> field. Since we no longer have
the searchVisible state in our new component, we can't use it to style the
<input /> any longer. However, we can pass a prop from our Header
component that tells the SearchForm to render the input as visible.

Let's define the searchVisible prop (using PropTypes , of course) and update
the render function to use the new prop value to show (or hide) the search
<input /> . We'll also set a default value for the visibility of the field to be
false (since our Header shows/hides it nicely):

101

class SearchForm extends React.Component {

 // ...

}

SearchForm.propTypes = {

 searchVisible: PropTypes.bool

}

SearchForm.defaultProps = {

 searchVisible: false

};

In case you forgot to include PropTypes package in your page
just add the following script tag in your page

<script src="https://unpkg.com/prop-types@15.6/prop-

types.min.js"></script>

Finally, let's pass the searchVisible state value from Header as a prop to
SearchForm

102

class Header extends React.Component {

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <SearchForm searchVisible={this.state.searchVisible} />

 {/* Adding an onClick handler to call the showSearch button

*/}

 <div

 onClick={this.showSearch.bind(this)}

 className="fa fa-search searchIcon"

 ></div>

 </div>

);

 }

}

Now we have our styles back on the <input /> element, let's add the
functionality for when the user types in the search box, we'll want to capture
the value of the search field. We can achieve this workflow by attaching the
onChange prop to the <input /> element and passing it a function to call
every time the <input /> element is changed.

103

class SearchForm extends React.Component {

 // ...

 updateSearchInput(e) {

 const val = e.target.value;

 this.setState({

 searchText: val

 });

 }

 // ...

 render() {

 const { searchVisible } = this.state;

 let searchClasses = ['searchInput']

 if (searchVisible) {

 searchClasses.push('active')

 }

 return (

 <form>

 <input

 type="search"

 className={searchClasses.join(" ")}

 onChange={this.updateSearchInput.bind(this)}

 placeholder="Search ..."

 />

 </form>

);

 }

}

When we type in the field, the updateSearchInput() function will be called.
We'll keep track of the value of the form by updating the state. In the
updateSearchInput() function, we can call directly to this.setState() to
update the state of the component.

The value is held on the event object's target as
event.target.value .

104

class SearchForm extends React.Component {

 // ...

 updateSearchInput(e) {

 const val = e.target.value;

 this.setState({

 searchText: val

 });

 }

 // ...

}

We're creating what's known as an uncontrolled component as we're not
setting the value of the <input /> element. We can't provide any
validation or post-processing on the input text value as it stands right
now.

If we want to validate the field or manipulate the value of the <input />
component, we'll have to create what is called a controlled component,
which really just means that we pass it a value using the value prop. A
controlled component version's render() function would look like:

class SearchForm extends React.Component {

 render() {

 return (

 <input

 type="search"

 value={this.state.searchText}

 className={searchInputClasses}

 onChange={this.updateSearchInput.bind(this)}

 placeholder="Search ..." />

);

 }

}

Controlled vs. uncontrolled

105

As of now, we have no way to actually submit the form, so our user's can't
really search. Let's change this. We can capture the form submission by using
the onSubmit prop on the <form /> element.

Let's update the render() function to reflect this change.

class SearchForm extends React.Component {

 // ...

 submitForm(event) {

 event.preventDefault();

 }

 // ...

 render() {

 const { searchVisible } = this.props;

 let searchClasses = ['searchInput']

 if (searchVisible) {

 searchClasses.push('active')

 }

 return (

 <form onSubmit={this.submitForm.bind(this)}>

 <input

 type="search"

 className={searchClasses.join(' ')}

 onChange={this.updateSearchInput.bind(this)}

 placeholder="Search ..." />

 </form>

);

 }

}

We immediately call event.preventDefault() on the
submitForm() function. This stops the browser from bubbling
the event up which would causes the default behavior of the
entire page to reload (the default function when a browser
submits a form).

106

Now when we type into the <input /> field and press enter, the
submitForm() function gets called with the event object.

So... great, we can submit the form and stuff, but when do we actually do the
searching? For demonstration purposes right now, we'll pass the search text
up the parent-child component chain so the Header can decide what to
search.

The SearchForm component certainly doesn't know what it's
searching, so we'll have to pass the responsibility up the
chain. We'll use this callback strategy quite a bit.

In order to pass the search functionality up the chain, our SearchForm will
need to accept a prop function to call when the form is submitted. Let's
define a prop we'll call onSubmit that we can pass to our SearchForm
component. Being good developers, we'll also add a default prop value and a
propType for this onSubmit function. Since we'll want to make sure the
onSubmit() is defined, we'll set the onSubmit prop to be a required prop:

class SearchForm extends React.Component {

 // ...

}

SearchForm.propTypes = {

 onSubmit: PropTypes.func.isRequired,

 searchVisible: PropTypes.bool

}

SearchForm.defaultProps = {

 onSubmit: () => {},

 searchVisible: false

}

107

When the form is submitted, we can call this function directly from the
props . Since we're keeping track of the search text in our state, we can call
the function with the searchText value in the state so the onSubmit()
function only gets the value and doesn't need to deal with an event.

class SearchForm extends React.Component {

 // ...

 submitForm(event) {

 // prevent the form from reloading the entire page

 event.preventDefault();

 // call the callback with the search value

 this.props.onSubmit(this.state.searchText);

 }

}

Now, when the user presses enter we can call this onSubmit() function
passed in the props by our Header component.

Let's add the onSubmit prop to the SearchForm in the Header component:

108

class Header extends React.Component {

 // ...

 render() {

 return (

 <div className="header">

 <div className="menuIcon">

 <div className="dashTop"></div>

 <div className="dashBottom"></div>

 <div className="circle"></div>

 </div>

 {this.props.title}

 <SearchForm searchVisible={this.state.searchVisible} onSubmit=

{this.props.onSearch}/>

 {/* Adding an onClick handler to call the showSearch button

*/}

 <div

 onClick={this.showSearch.bind(this)}

 className="fa fa-search searchIcon"

 ></div>

 </div>

);

 }

}

Now we have a search form component we can use and reuse across our app.
Of course, we're not actually searching anything yet. Let's fix that and
implement search.

To implement search in our component, we'll want to pass up the search
responsibility one more level from our Header component to a container
component we'll call Panel .

Implementing search

109

First things first, let's implement the same pattern of passing a callback to a
parent component from within a child component from the Panel to the
Header component.

On the Header component, let's update the propTypes for a prop we'll define
as a prop called onSearch :

class Header extends React.Component {

 // ...

}

Header.propTypes = {

 onSearch: PropTypes.func

}

Here's our Panel component:

110

class Content extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 activities: data,

 };

 }

 render() {

 const { activities } = this.state; // ES6 destructuring

 return (

 <div>

 <Header

 title="Github activity" />

 <div className="content">

 <div className="line" />

 {/* Timeline item */}

 {activities.map(activity => (

 <ActivityItem key={activity.id} activity={activity} />

))}

 </div>

 </div>

);

 }

}

111

In any case, our Panel component is essentially a copy of our
Content component we previously built on day 7. Make sure
to include the ActivityItem component in your page. Also
don't forget to include Moment.js in your file as it's used by
ActivityItem to format dates. Add the following script tag
in your page

<script

src="https://unpkg.com/moment@2.24.0/min/moment.min.js">

</script>

Notice that our virtual tree looks like this:

<Panel>

 <Header>

 <SearchForm></SearchForm>

 </Header>

</Panel>

When the <SearchForm /> is updated, it will pass along it's awareness of
the search input's change to it's parent, the <Header /> , when it will pass
along upwards to the <Panel /> component. This method is very common
in React apps and provides a good set of functional isolation for our
components.

Back in our Panel component, we'll pass a function to the Header as the
onSearch() prop on the Header . What we're saying here is that when the
search form has been submitted, we want the search form to call back to the
header component which will then call to the Panel component to handle
the search.

112

Since the Header component doesn't control the content listing, the Panel
component does, we have to pass the responsibility one more level up, as
we're defining here.

In order to actually handle the searching, we'll need to pass an onSearch()
function to our Header component. Let's define an onSearch() function in
our Panel component and pass it off to the Header props in the render()
function:

class Panel extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 activities: data,

 };

 }

 handleSearch(val) {

 // handle search here

 }

 render() {

 const { activities } = this.state; // ES6 destructuring

 return (

 <div>

 <Header

 title="Github activity"

 onSearch={this.handleSearch.bind(this)}

 />

 <div className="content">

 <div className="line" />

 {/* Timeline item */}

 {activities.map(activity => (

 <ActivityItem key={activity.id} activity={activity} />

))}

 </div>

 </div>

);

 }

}

113

All we did here was add a handleSearch() function and pass it to the header.
Now when the user types in the search box, the handleSearch() function on
our Panel component will be called.

Let's update our handleSearch method to actually do the searching:

class Panel extends React.Component {

 // ...

 handleSearch(val) {

 // resets the data if the search value is empty

 if (val === "") {

 this.setState({

 activities: data

 });

 } else {

 const { activities } = this.state;

 const filtered = activities.filter(

 a => a.actor && a.actor.login.match(val)

);

 this.setState({

 activities: filtered

 });

 }

 }

 // ...

}

All the activities.filter() function does is run the function passed in for
every element and it filters out the values that return falsy values, keeping
the ones that return truthy ones. Our search function simply looks for a
match on the Github activity's actor.login (the Github user) to see if it
regexp-matches the val value.

With the handleSearch() function updated, our search is complete.

Try searching for auser .

114

Now we have a 3-layer app component that handles search from a nested
child component. We jumped from beginner to intermediate with this post.
Pat yourself on the back. This was some hefty material. Make sure you
understand this because we'll use these concepts we covered today quite
often.

In the next section, we'll jump out and look at building pure components.

115

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-11/post.md)

Pure Components

React offers several different methods for creating components.
Today we'll talk about the final method of creating components,
the function stateless pure component.

We've looked at a few different ways to build react components. One method
we left out up through this point is the stateless component/functional
method of building React components.

As we've seen up through this point, we've only worked through building
components using the React.Component and React.createClass() methods.
For more performance and simplicity, React also allows us to create pure,
stateless components using a normal JavaScript function.

A Pure component can replace a component that only has a render function.
Instead of making a full-blown component just to render some content to the
screen, we can create a pure one instead.

Pure components are the simplest, fastest components we can write. They
are easy to write, simple to reason about, and the quickest component we
can write. Before we dive into why these are better, let's write one, or heck a
couple!

116

https://github.com/fullstackreact/30-days-of-react/blob/master/day-11/post.md

// The simplest one

const HelloWorld = () => (<div>Hello world</div>);

// A Notification component

const Notification = (props) => {

 const {level, message} = props;

 const classNames = ['alert', 'alert-' + level]

 return (

 <div className={classNames}>

 {message}

 </div>

)

};

// In ES5

var ListItem = function(props) {

 var handleClick = function(event) {

 props.onClick(event);

 };

 return (

 <div className="list">

 <a

 href="#"

 onClick={handleClick}>

 {props.children}

 </div>

)

}

So they are just functions, right? Yep! Since they are just functions, it's really
easy to test using pure JavaScript. The idea is that if React knows the props
that are sent into a component, it can be deterministic in knowing if it has to
rerender or not. The same props in equal the same output virtual DOM.

In React, functional components are called with an argument of props
(similar to the React.Component constructor class), which are the props it's
called with as well as with the current context of the component tree.

117

For instance, let's say we want to rewrite our original Timer component
using functional components as we want to give our users a dynamic way to
set their own clock styles (24 hour clock vs. 12, different separators, maybe
they don't want to display the seconds, etc).

We can break up our clock into multiple components where we can use each
block of time as an individual component. We might break them up like so:

const Hour = (props) => {

 let {hours} = props;

 if (hours === 0) { hours = 12; }

 if (props.twelveHours) { hours -= 12; }

 return ({hours})

}

const Minute = ({minutes}) => ({minutes<10 && '0'}{minutes}

)

const Second = ({seconds}) => ({seconds<10 && '0'}{seconds}

)

const Separator = ({separator}) => ({separator || ':'})

const Ampm = ({hours}) => ({hours >= 12 ? 'pm' : 'am'})

With these, we can place individual components as through they are full-
blown React components (they are):

<div>Minute: <Minute minutes={12} /></div>

<div>Second: <Second seconds={51} /></div>

Minute: 12
Second: 51

118

We can refactor our clock component to accept a format string and break up
this string selecting only the components our user is interested in showing.
There are multiple ways we can handle this, like forcing the logic into the
Clock component or we can create another stateless component that
accepts a format string. Let's do that (easier to test):

const Formatter = (props) => {

 let children = props.format.split('').map((e, idx) => {

 if (e === 'h') {

 return <Hour key={idx} {...props} />

 } else if (e === 'm') {

 return <Minute key={idx} {...props} />

 } else if (e === 's') {

 return <Second key={idx} {...props} />

 } else if (e === 'p') {

 return <Ampm key={idx} {...props} />

 } else if (e === ' ') {

 return ;

 } else {

 return <Separator key={idx} {...props} />

 }

 });

 return {children};

}

This is a little ugly with the key and {...props} thingie in there. React gives
us some helpers for mapping over children and taking care of handling the
unique key for each child through the React.Children object.

The render() function of our Clock component can be greatly simplified
thanks to the Formatter component into this:

119

class Clock extends React.Component {

 state = { currentTime: new Date() }

 componentDidMount() {

 this.setState({

 currentTime: new Date()

 }, this.updateTime);

 }

 componentWillUnmount() {

 if (this.timerId) {

 clearTimeout(this.timerId)

 }

 }

 updateTime = e => {

 this.timerId = setTimeout(() => {

 this.setState({

 currentTime: new Date()

 }, this.updateTime);

 })

 }

 render() {

 const { currentTime } = this.state

 const hour = currentTime.getHours();

 const minute = currentTime.getMinutes();

 const second = currentTime.getSeconds();

 return (

 <div className='clock'>

 <Formatter

 {...this.props}

 state={this.state}

 hours={hour}

 minutes={minute}

 seconds={second}

 />

 </div>

)

 }

}

We can now render the clock in a custom format:
120

ReactDOM.render(<Clock format="h:m:s p" />,

document.querySelector("#app"));

Not only is our Clock component much simpler, but it's so much easier to
test. It also will help us transition to using a data state tree, like Flux/Redux
frameworks, but more on those later.

Advantages to using functional components in React are:

We can do away with the heavy lifting of components, no constructor,
state, life-cycle madness, etc.
There is no this keyword (i.e. no need to bind)
Presentational components (also called dumb components) emphasize
UI over business logic (i.e. no state manipulation in the component)
Encourages building smaller, self-contained components
Highlights badly written code (for better refactoring)
FAST FAST FAST FAST FAST
They are easy to reuse

You might say why not use a functional component? Well, some of the
disadvantage of using a functional component are some of the advantages:

No life-cycle callback hooks
Limited functionality
There is no this keyword

16:01:11 pm

Uhh... so why care?

121

Overall, it's a really good idea to try to prefer using functional components
over their heavier React.Component cousins. When we get to talking about
data management in React, we'll see how we can use these presentational
components with data as pure props .

Nice work today. We've successfully achieved React rank after today. We now
know the three ways to make a React Component.

Tomorrow, we'll get set up using/building React apps with the package
management tool shipped by the React team: create-react-app .

122

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-12/post.md)

create-react-app

Today, we're going to add a build process to store common build
actions so we can easily develop and deploy our applications.

The React team noticed that there is a lot of configuration required (and the
community helped bloat -- us included) to run a React app. Luckily, some
smart folks in the React team/community got together and built/released an
official generator app that makes it much easier to get up and running
quickly.

So far in this course, we've only been working with writing our components
in a single script. Although it's great for simplicity, it can be difficult to share
components amongst multiple developers. A single file is also pretty difficult
to write complex applications.

Instead, we'll set up a build tool for our applications using a very popular
packaging tool called create-react-app
(https://github.com/facebookincubator/create-react-app). The tool
provides a great place to start out developing our applications without
needing to spend too much time working on setting up our build tooling.

In order to use it, we'll need to start out by installing it. We can use npm or
yarn to install create-react-app :

Packaging

create-react-app
123

https://github.com/fullstackreact/30-days-of-react/blob/master/day-12/post.md
https://github.com/facebookincubator/create-react-app

The create-react-app (https://github.com/facebookincubator/create-react-
app) project is released through Facebook helps us get up and running
quickly with a React app on our system with no custom configuring required
on our part.

The package is released as a Node (https://nodejs.org/) Package
(https://www.npmjs.com/package/create-react-app) and can be installed
using npm .

The Node (https://nodejs.org) homepage has simple documentation on
how to install node, if you don't already have it installed on your system.

We recommend using the nvm (https://github.com/creationix/nvm) or
the n (https://github.com/tj/n) version management tools. These tools
make it incredibly easy to install/use multiple versions of node on your
system at any point.

With node installed on our system, we can install the create-react-app
package:

npm install --global create-react-app

create-react-app

A plug for nvm and n

124

https://github.com/facebookincubator/create-react-app
https://nodejs.org/
https://www.npmjs.com/package/create-react-app
https://nodejs.org/
https://github.com/creationix/nvm
https://github.com/tj/n

With create-react-app installed globally, we'll be able to use the create-
react-app command anywhere in our terminal.

Let's create a new app we'll call 30days using the create-react-app
command we just installed. Open a Terminal window in a directory where
you want to create your app.

In terminal, we can create a new React application using the command and
adding a name to the app we want to create.

create-react-app 30days && cd 30days

125

Let's start our app in the browser. The create-react-app package comes with
a few built-in scripts it created for us (in the package.json file). We can start
editing our app using the built-in webserver using the npm start command:

npm start

126

This command will open a window in Chrome to the default app it created for
us running at the url: http://localhost:3000/ (http://localhost:3000/).

Let's edit the newly created app. Looking at the directory structure it
created, we'll see we have a basic node app running with a
public/index.html and a few files in the src/ directory that comprise our
running app.

127

http://localhost:3000/

Let's open up the src/App.js file and we'll see we have a very basic
component that should all look familiar. It has a simple render function which
returns the result we see in the Chrome window.

The index.html file has a single <div /> node with the id of #root , where
the app itself will be mounted for us automatically (this is handled in the
src/index.js file). Anytime we want to add webfonts, style tags, etc. we can
load them in the index.html file.

128

Let's look at a few of the features create-react-app enables for us.

We've used multiple components in the past. Let's pull in the example we
walked through on day-4 with a header and content (slightly simplified --
changing the className from notificationsFrame to App and removing the
inner component):

import React from "react";

class App extends React.Component {

 render() {

 return (

 <div className="App">

 <Header />

 <Content />

 </div>

);

 }

}

We could define the Header and the Content component in the same file, but
as we discussed, that becomes pretty cumbersome. Instead, let's create a
directory called components/ in the src/ directory (src/components/) and
create two files called Header.js and Content.js in there:

in my-app/

mkdir src/components

touch src/components/{Header,Content}.js

Now, let's write the two components in their respective file. First, the Header
components in src/components/Header.js :

129

import React from "react";

class Header extends React.Component {

 render() {

 return (

 <div id="header">

 <h1>Header</h1>

 </div>

);

 }

}

And now let's write the Content component in the
src/components/Content.js file:

import React from "react";

class Content extends React.Component {

 render() {

 return <p className="App-intro">Content goes here</p>;

 }

}

By making a small update to these two component definitions, we can then
import them into our App component (in src/App.js).

We'll use the export keyword before the class definition:

Let's update the Header component slightly:

export class Header extends React.Component {

 // ...

}

and the Content component:

130

export class Content extends React.Component {

 // ...

}

Now we can import these two component from our src/App.js file. Let's
update our App.js by adding these two import statements:

import React from "react";

import { Header } from "./components/Header";

import { Content } from "./components/Content";

class App extends React.Component {

 render() {

 return (

 <div className="App">

 <Header />

 <Content />

 </div>

);

 }

}

Here, we're using named exports to pull in the two components from their
respective files in src/components/ .

By convention, if we only have a single export from these files, we can use the
export default syntax so we can remove the {} surrounding the named
export. Let's update each of these respective files to include an extra line at
the end to enable the default import:

export class Header extends React.Component {

 // ...

}

export default Header;

131

and the Content component:

export class Content extends React.Component {

 // ...

}

export default Content;

Now we can update our import of the two components like so:

import React from "react";

import Header from "./components/Header";

import Content from "./components/Content";

class App extends React.Component {

 render() {

 return (

 <div className="App">

 <Header />

 <Content />

 </div>

);

 }

}

Using this knowledge, we can now also update our components by importing
the named Component class and simplify our definition of the class file again.
Let's take the Content component in src/components/Content.js :

132

import React, {Component} from 'react'; // This is the change

export class Content extends Component { // and this allows us

 // to not call

React.Component

 // but instead use just

 // the Component class

 render() {

 return <p className="App-intro">Content goes here</p>;

 }

}

export default Content;

We'll get to deployment in a few weeks, but for the time being know that the
generator created a build command so we can create minified, optimize
versions of our app that we can upload to a server.

We can build our app using the npm run build command in the root of our
project:

npm run build

Shipping

133

With that, we now have a live-reloading single-page app (SPA) ready for
development. Tomorrow, we'll use this new app we built diving into
rendering multiple components at run-time.

134

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-13/post.md)

Repeating Elements

Today we're going to work through how to display multiple
components in preparation for pulling in external data into our
app.

Up through this point, we've been building a basic application without any
external data. Before we get there (we'll start on this functionality tomorrow),
let's look over something we glossed over in the previous two weeks:

We've already seen this before where we've iterated over a list of objects and
render multiple components on screen. Before we add too much complexity
in our app with loading external data, today we'll take a quick peek at how to
repeat components/elements in our app.

Since JSX is seen as plain JavaScript by the browser, we can use any ole'
JavaScript inside the template tags in JSX. We've already seen this in action.
As a quick demo:

Repeating elements

135

https://github.com/fullstackreact/30-days-of-react/blob/master/day-13/post.md

const a = 10;

const ShowA = () => <div>{a}</div>;

const MultipleA = () => <div>{a * a}</div>;

const App = props => {

 return (

 <div className="app">

 <ShowA />

 <MultipleA />

 </div>

);

};

Notice the things inside of the template tags {} look like simple JavaScript.
That's because it is just JavaScript. This feature allows us to use (most) native

features of JavaScript inside our template tags including native iterators,
such as map and forEach .

Let's see what we mean here. Let's convert the previous example's a value
from a single integer to a list of integers:

const a = [1, 10, 100, 1000, 10000];

We can map over the a variable here inside our components and return a list
of React components that will build the virtual DOM for us.

10
100

136

const a = [1, 10, 100, 1000, 10000];

const Repeater = () => {

 return (

 {a.map(i => {

 return {i};

 })}

);

};

What is the map() function?

The map function is a native JavaScript built-in function on the array. It
accepts a function to be run on each element of the array, so the function
above will be run four times with the value of i starting as 1 and then it
will run it again for the second value where i will be set as 10 and so on
and so forth.

Let's update the app we created on day 12 with our App component here.
Let's open up our src/App.js file and replace the content of the App
component with this source. Cleaning up a few unused variables and your
src/App.js should look similar to this:

1
10
100
1000

137

import React from "react";

const a = [1, 10, 100, 1000, 10000];

const App = props => {

 return (

 {a.map(i => {

 return {i};

 })}

);

};

export default App;

Starting the app again with the command generated by the create-react-app
command: npm start , we can see the app is working in the browser!

However, if we open the developer console, we'll see we have an error
printed out. This error is caused by the fact that React doesn't know how to
keep track of the individual components in our list as each one just looks like
a component.

138

For performance reasons, React uses the virtual DOM to attempt to limit the
number of DOM elements that need to be updated when it rerenders the
view. That is if nothing has changed, React won't make the browser update
anything to save on work.

This feature is really fantastic for building web applications, but sometimes
we have to help React out by providing unique identifiers for nodes. Mapping
over a list and rendering components in the map is one of those times.

React expects us to uniquely identify components by using a special prop:
the key prop for each element of the list. The key prop can be anything we

want, but it must be unique for that element. In our example, we can use the
i variable in the map as no other element in the array has the same value.

Let's update our mapping to set the key:

const App = props => {

 return (

 {a.map(i => {

 return <li key={i}>{i};

 })}

);

};

We talked about building a parent-child relationship a bit earlier this week,
but let's dive a bit more into detail about how we get access to the children
inside a parent component and how we can render them.

On day 11, we built a <Formatter /> component to handle date formatting
within the Clock component to give our users flexibility with their own
custom clock rendering. Recall that the implementation we created is
actually pretty ugly and relatively complex.

Children

139

const Formatter = props => {

 let children = props.format.split("").map((e, idx) => {

 if (e === "h") {

 return <Hour key={idx} {...props} />;

 } else if (e === "m") {

 return <Minute key={idx} {...props} />;

 } else if (e === "s") {

 return <Second key={idx} {...props} />;

 } else if (e === "p") {

 return <Ampm key={idx} {...props} />;

 } else if (e === " ") {

 return ;

 } else {

 return <Separator key={idx} {...props} />;

 }

 });

 return {children};

};

We can use the React.Children object to map over a list of React objects and
let React do this heavy-lifting. The result of this is a much cleaner Formatter
component (not perfect, but functional):

140

const Formatter = props => {

 let children = props.format.split("").map(e => {

 if (e == "h") {

 return <Hour />;

 } else if (e == "m") {

 return <Minute />;

 } else if (e == "s") {

 return <Second />;

 } else if (e == "p") {

 return <Ampm />;

 } else if (e == " ") {

 return ;

 } else {

 return <Separator />;

 }

 });

 return (

 {React.Children.map(children, c => React.cloneElement(c,

props))}

);

};

141

We have yet to talk about the React.cloneElement() function, so let's look
at it briefly here. Remember WWWWWAAAAAYYYYY back on day 2 we
looked at how the browser sees JSX? It turns it into JavaScript that looks
similar to:

React.createElement("div", null,

 React.createElement("img", {src: "profile.jpg", alt: "Profile

photo"}),

 React.createElement("h1", null, "Welcome back Ari")

);

Rather than creating a new component instance (if we already have one),
sometimes we'll want to copy it or add custom props/children to the
component so we can retain the same props it was created with. We can
use React.cloneElement() to handle this for us.

The React.cloneElement() has the same API as the
React.createElement() function where the arguments are:

1. The ReactElement we want to clone
2. Any props we want to add to the instance
3. Any children we want it to have.

In our Formatter example, we're creating a copy of all the children in the
list (the <Hour /> , <Minute /> , etc. components) and passing them the
props object as their props.

The React.Children object provides some nice utility functions for dealing
with children. Our Formatter example above uses the map function to iterate
through the children and clone each one in the list. It creates a key (if
necessary) for each one, freeing us from having to manage the uniqueness
ourselves.

Let's use the React.Children.map() function to update our App component:

React.cloneElement

142

const App = props => {

 return (

 {React.Children.map(a, i => (

 {i}

))}

);

};

Back in the browser, everything still works.

There are several other really useful methods in the React.Children object
available to us. We'll mostly use the React.Children.map() function, but it's
good to know about the other ones available
(https://facebook.github.io/react/docs/top-level-api.html#react.children)
to us. Check out the documentation
(https://facebook.github.io/react/docs/top-level-api.html#react.children)
for a longer list.

Up through this point, we've only dealt with local data, not really focusing on
remote data (although we did briefly mention it when building our activity
feed component). Tomorrow we're going to get into interacting with a server

143

https://facebook.github.io/react/docs/top-level-api.html#react.children
https://facebook.github.io/react/docs/top-level-api.html#react.children

so we can use it in our React apps.

Great work today!

144

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-14/post.md)

Fetching Remote Data

We're ready to make an external request to fetch data! Today
we're looking at the first step of making a call to an external API.

Our apps, until this point have largely been static. Even the data we displayed
from Github was static data included in our project. Our apps are really only
as interesting as the data we use, so let's make our apps more interesting.

The normal browser workflow is actually a synchronous one. When the
browser receives html, it parses the string of html content and converts it
into a tree object (this is what we often refer to as the DOM object/DOM
tree).

When the browser parses the DOM tree, as it encounters remote files (such
as <link /> and <script /> tags), the browser will request these files (in
parallel), but will execute them synchronously (so as to maintain their order
they are listed in the source).

What if we want to get some data from off-site? We'll make requests for data
that's not available at launch time to populate data in our app. However, it's
not necessarily that easy to do because of the asynchronous nature of
external API requests.

Querying for remote data

145

https://github.com/fullstackreact/30-days-of-react/blob/master/day-14/post.md

Essentially, what this means is that we'll have to handle with JavaScript code
after an unknown period of time as well actually make an HTTP request.
Luckily for us, other people have dealt with this problem for a long time and
we now have some pretty nice ways of handling it.

Starting with handling how we'll be making an HTTP request, we'll use a
library (called fetch , which is also a web standard
(https://fetch.spec.whatwg.org/), hopefully) to make the http requesting
easier to deal with.

In order to use fetch, we'll need to install the library in our app we previously
created. Let's open up a terminal window again and use npm to install the
whatwg-fetch library (an implementation of fetch). In the same directory
where we created our application, let's call:

npm install --save whatwg-fetch

Fetch

146

https://fetch.spec.whatwg.org/

With the library installed, we can make a request to an off-site server. In
order to get access to the fetch library, we'll need to import the package in
our script. Let's update the top few lines of our src/App.js file adding the
second line:

import React, { Component } from "react";

import "whatwg-fetch";

// ...

The whatwg-fetch object is unique in that it is one of the few
libraries that we'll use which attaches it's export on the
global object (in the case of the browser, this object is
window). Unlike the react library, we don't need to get a
handle on it's export as the library makes it available on the
global object.

With the whatwg-fetch library included in our project, we can make a request
using the fetch() api. However, before we can actually start using the
fetch() api, we'll need to understand what Promises are and how they work
to deal with the asynchronous we discussed in the introduction.

We'll pick up with promises tomorrow. Good job getting through week two
and see you tomorrow!

147

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-15/post.md)

Introduction to Promises

Today, we're going to look at what we need to know to
understand Promises from a high-level, so we can build our
applications using this incredibly useful concept.

Yesterday (/articles/30-days-of-react-day-14/) we installed the fetch
library into our create-react-app project we started on day 12 (/articles/30-
days-of-react-day-12/). Today we'll pick up from yesterday discussing the
concept and the art of Promises (https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise).

As defined by the Mozilla, a Promise object is used for handling
asynchronous computations which has some important guarantees that are
difficult to handle with the callback method (the more old-school method of
handling asynchronous code).

A Promise object is simply a wrapper around a value that may or may not be
known when the object is instantiated and provides a method for handling
the value after it is known (also known as resolved) or is unavailable for a
failure reason (we'll refer to this as rejected).

Using a Promise object gives us the opportunity to associate functionality for
an asynchronous operation's eventual success or failure (for whatever
reason). It also allows us to treat these complex scenarios by using

What is a promise

148

https://github.com/fullstackreact/30-days-of-react/blob/master/day-15/post.md
http://localhost:3020/articles/30-days-of-react-day-14/
http://localhost:3020/articles/30-days-of-react-day-12/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

synchronous-like code.

For instance, consider the following synchronous code where we print out
the current time in the JavaScript console:

var currentTime = new Date();

console.log('The current time is: ' + currentTime);

This is pretty straight-forward and works as the new Date() object
represents the time the browser knows about. Now consider that we're using
a different clock on some other remote machine. For instance, if we're
making a Happy New Years clock, it would be great to be able to synchronize
the user's browser with everyone elses using a single time value for everyone
so no-one misses the ball dropping ceremony.

Suppose we have a method that handles getting the current time for the
clock called getCurrentTime() that fetches the current time from a remote
server. We'll represent this now with a setTimeout() that returns the time
(like it's making a request to a slow API):

function getCurrentTime() {

 // Get the current 'global' time from an API

 return setTimeout(function() {

 return new Date();

 }, 2000);

}

var currentTime = getCurrentTime()

console.log('The current time is: ' + currentTime);

Our console.log() log value will return the timeout handler id, which is
definitely not the current time. Traditionally, we can update the code using a
callback to get called when the time is available:

149

function getCurrentTime(callback) {

 // Get the current 'global' time from an API

 return setTimeout(function() {

 var currentTime = new Date();

 callback(currentTime);

 }, 2000);

}

getCurrentTime(function(currentTime) {

 console.log('The current time is: ' + currentTime);

});

What if there is an error with the rest? How do we catch the error and define
a retry or error state?

function getCurrentTime(onSuccess, onFail) {

 // Get the current 'global' time from an API

 return setTimeout(function() {

 // randomly decide if the date is retrieved or not

 var didSucceed = Math.random() >= 0.5;

 if (didSucceed) {

 var currentTime = new Date();

 onSuccess(currentTime);

 } else {

 onFail('Unknown error');

 }

 }, 2000);

}

getCurrentTime(function(currentTime) {

 console.log('The current time is: ' + currentTime);

}, function(error) {

 console.log('There was an error fetching the time');

});

Now, what if we want to make a request based upon the first request's value?
As a short example, let's reuse the getCurrentTime() function inside again (as
though it were a second method, but allows us to avoid adding another
complex-looking function):

150

function getCurrentTime(onSuccess, onFail) {

 // Get the current 'global' time from an API

 return setTimeout(function() {

 // randomly decide if the date is retrieved or not

 var didSucceed = Math.random() >= 0.5;

 console.log(didSucceed);

 if (didSucceed) {

 var currentTime = new Date();

 onSuccess(currentTime);

 } else {

 onFail('Unknown error');

 }

 }, 2000);

}

getCurrentTime(function(currentTime) {

 getCurrentTime(function(newCurrentTime) {

 console.log('The real current time is: ' + currentTime);

 }, function(nestedError) {

 console.log('There was an error fetching the second time');

 })

}, function(error) {

 console.log('There was an error fetching the time');

});

Dealing with asynchronousity in this way can get complex quickly. In
addition, we could be fetching values from a previous function call, what if we
only want to get one... there are a lot of tricky cases to deal with when
dealing with values that are not yet available when our app starts.

Using promises, on the other hand helps us avoid a lot of this complexity
(although is not a silver bullet solution). The previous code, which could be
called spaghetti code can be turned into a neater, more synchronous-looking
version:

Enter Promises

151

function getCurrentTime() {

 // Get the current 'global' time from an API using Promise

 return new Promise((resolve, reject) => {

 setTimeout(function() {

 var didSucceed = Math.random() >= 0.5;

 didSucceed ? resolve(new Date()) : reject('Error');

 }, 2000);

 })

}

getCurrentTime()

 .then(currentTime => getCurrentTime())

 .then(currentTime => {

 console.log('The current time is: ' + currentTime);

 return true;

 })

 .catch(err => console.log('There was an error:' + err))

This previous source example is a bit cleaner and clear as to what's going on
and avoids a lot of tricky error handling/catching.

To catch the value on success, we'll use the then() function available on the
Promise instance object. The then() function is called with whatever the
return value is of the promise itself. For instance, in the example above, the
getCurrentTime() function resolves with the currentTime() value (on
successful completion) and calls the then() function on the return value
(which is another promise) and so on and so forth.

To catch an error that occurs anywhere in the promise chain, we can use the
catch() method.

152

We're using a promise chain in the above example to create a
chain of actions to be called one after another. A promise
chain sounds complex, but it's fundamentally simple.
Essentially, we can "synchronize" a call to multiple
asynchronous operations in succession. Each call to then() is
called with the previous then() function's return value.

For instance, if we wanted to manipulate the value of the
getCurrentTime() call, we can add a link in the chain, like so:

getCurrentTime()

 .then(currentTime => getCurrentTime())

 .then(currentTime => {

 return 'It is now: ' + currentTime;

 })

 // this logs: "It is now: [current time]"

 .then(currentTimeMessage => console.log(currentTimeMessage))

 .catch(err => console.log('There was an error:' + err))

A promise only ever has one of three states at any given time:

pending
fulfilled (resolved)
rejected (error)

A pending promise can only ever lead to either a fulfilled state or a rejected
state once and only once, which can avoid some pretty complex error
scenarios. This means that we can only ever return a promise once. If we
want to rerun a function that uses promises, we need to create a new one.

Single-use guarantee

Creating a promise
153

We can create new promises (as the example shows above) using the Promise
constructor. It accepts a function that will get run with two parameters:

The onSuccess (or resolve) function to be called on success resolution
The onFail (or reject) function to be called on failure rejection

Recalling our function from above, we can see that we call the resolve()
function if the request succeeded and call the reject() function if the
method returns an error condition.

var promise = new Promise(function(resolve, reject) {

 // call resolve if the method succeeds

 resolve(true);

})

promise.then(bool => console.log('Bool is true'))

Now that we know what promises are, how to use, and how to create them,
we can actually get down to using the fetch() library we installed yesterday.
dd

154

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-16/post.md)

Displaying Remote Data

Our front-end applications are only as interesting as the data we
display in them. Today, let's actually start making a request for
data and get it integrated into our app.

As of today, we've worked through promises, built our app using the npm
packager, installed our remote object fetching library (whatwg-fetch) and
we're finally ready to integrate remote data into our application.

Let's get into using the fetch library we installed on day 14 (/articles/30-
days-of-react/14-ajax).

For simplicity purposes, let's break out our demo from yesterday where we
fetched the current time from an API server:

Fetching data

Get the current time

PST A chronic string message (such as 7 hours from now)Update request

We'll be making a request from:

155

https://github.com/fullstackreact/30-days-of-react/blob/master/day-16/post.md
http://localhost:3020/articles/30-days-of-react/14-ajax

This demo react component makes a request to the API server and reports
back the current time from it's clock. Before we add the call to fetch, let's
create a few stateful components we'll use to display the time and update the
time request.

We realize the next few lines are walls of code, which we generally try to
avoid, especially without discussing how they work. However, since we're
not talking about how to create a component in detail here, yet we still
want to fill out a complete component, we've made an exception.

Please leave us feedback (links at the bottom) if you prefer us to change
this approach for today.

First, the basis of the wrapper component which will show and fetch the
current time looks like the following. Let's copy and paste this code into our
app at src/App.js :

Walls of code warning

156

import React from 'react';

import 'whatwg-fetch';

import './App.css';

import TimeForm from './TimeForm';

class App extends React.Component {

 constructor(props) {

 super(props);

 this.fetchCurrentTime = this.fetchCurrentTime.bind(this);

 this.handleFormSubmit = this.handleFormSubmit.bind(this);

 this.handleChange = this.handleChange.bind(this);

 this.state = {

 currentTime: null, msg: 'now'

 }

 }

 // methods we'll fill in shortly

 fetchCurrentTime() {}

 getApiUrl() {}

 handleFormSubmit(evt) {}

 handleChange(newState) {}

 render() {

 const {currentTime, tz} = this.state;

 const apiUrl = this.getApiUrl();

 return (

 <div>

 {!currentTime &&

 <button onClick={this.fetchCurrentTime}>

 Get the current time

 </button>}

 {currentTime && <div>The current time is: {currentTime}</div>}

 <TimeForm

 onFormSubmit={this.handleFormSubmit}

 onFormChange={this.handleChange}

 tz={tz}

 msg={'now'}

 />

 <p>We'll be making a request from: <code>{apiUrl}</code></p>

157

 </div>

)

 }

}

export default App;

The previous component is a basic stateful React component as we've
created. Since we'll want to show a form, we've included the intended usage
of the TimeForm let's create next.

Let's create this component in our react app using create-react-app . Add
the file src/TimeForm.js into our project:

touch src/TimeForm.js

Now let's add content. We'll want our TimeForm to take the role of allowing
the user to switch between timezones in their browser. We can handle this
by creating a stateful component we'll call the TimeForm . Our TimeForm
component might look like the following:

158

import React from 'react'

const timezones = ['PST', 'MST', 'MDT', 'EST', 'UTC']

export class TimeForm extends React.Component {

 constructor(props) {

 super(props);

 this._changeTimezone = this._changeTimezone.bind(this);

 this._handleFormSubmit = this._handleFormSubmit.bind(this);

 this._handleChange = this._handleChange.bind(this);

 this._changeMsg = this._changeMsg.bind(this);

 const {tz, msg} = this.props;

 this.state = {tz, msg};

 }

 _handleChange(evt) {

 typeof this.props.onFormChange === 'function' &&

 this.props.onFormChange(this.state);

 }

 _changeTimezone(evt) {

 const tz = evt.target.value;

 this.setState({tz}, this._handleChange);

 }

 _changeMsg(evt) {

 const msg =

 encodeURIComponent(evt.target.value).replace(/%20/g, '+');

 this.setState({msg}, this._handleChange);

 }

 _handleFormSubmit(evt) {

 evt.preventDefault();

 typeof this.props.onFormSubmit === 'function' &&

 this.props.onFormSubmit(this.state);

 }

 render() {

 const {tz} = this.state;

 return (

159

 <form onSubmit={this._handleFormSubmit}>

 <select

 onChange={this._changeTimezone}

 defaultValue={tz}>

 {timezones.map(t => {

 return (<option key={t} value={t}>{t}</option>)

 })}

 </select>

 <input

 type="text"

 placeholder="A chronic string message (such as 7 hours from

now)"

 onChange={this._changeMsg}

 />

 <input

 type="submit"

 value="Update request"

 />

 </form>

)

 }

}

export default TimeForm;

With these Components created, let's load up our app in the browser after
running it with npm start and we'll see our form (albeit not incredibly
beautiful yet). Of course, at this point, we won't have a running component as
we haven't implemented our data fetching. Let's get to that now.

Get the current time

PST A chronic string message (such as 7 hours from now)Update request

We'll be making a request from:

Fetching data
160

As we said yesterday, we'll use the fetch() API with promise support. When
we call the fetch() method, it will return us a promise, where we can handle
the request however we want. We're going to make a request to our now-
based API server (so start-up might be slow if it hasn't been run in a while).

We're going to be building up the URL we'll request as it represents the time
query we'll request on the server.

I've already defined the method getApiUrl() in the App component, so let's
fill that function in.

The chronic api server accepts a few variables that we'll customize in the
form. It will take the timezone to along with a chronic message. We'll start
simply and ask the chronic library for the pst timezone and the current time
(now):

class App extends React.Component {

 constructor(props) {

 super(props);

 this.state = {

 currentTime: null, msg: 'now', tz: 'PST'

 }

 }

 // ...

 getApiUrl() {

 const {tz, msg} = this.state;

 const host = 'https://andthetimeis.com';

 return host + '/' + tz + '/' + msg + '.json';

 }

 // ...

export default App;

Now, when we call getApiUrl() , the URL of the next request will be returned
for us. Now, finally, let's implement our fetch() function. The fetch()
function accepts a few arguments that can help us customize our requests.

Fetching data

161

The most basic GET request can just take a single URL endpoint. The return
value on fetch() is a promise object, that we explored in-depth yesterday.

Let's update our fetchCurrentTime() method to fetch the current time from
the remote server. We'll use the .json() method on the response object to
turn the body of the response from a JSON object into JavaScript object and
then update our component by setting the response value of the dateString
as the currentTime in the component state:

class App extends React.Component {

 // ...

 fetchCurrentTime() {

 fetch(this.getApiUrl())

 .then(resp => resp.json())

 .then(resp => {

 const currentTime = resp.dateString;

 this.setState({currentTime})

 })

 }

 // ...

}

The final piece of our project today is getting the data back from the form to
update the parent component. That is, when the user updates the values
from the TimeForm component, we'll want to be able to access the data in the
App component. The TimeForm component already handles this process for
us, so we just need to implement our form functions.

When a piece of state changes on the form component, it will call a prop
called onFormChange . By defining this method in our App component, we can
get access to the latest version of the form.

In fact, we'll just call setState() to keep track of the options the form allows
the user to manipulate:

162

class App extends React.Component {

// ...

 handleChange(newState) {

 this.setState(newState);

 }

// ...

}

Finally, when the user submits the form (clicks on the button or presses enter
in the input field), we'll want to make another request for the time. This
means we can define our handleFormSubmit prop to just call the
fetchCurrentTime() method:

class App extends React.Component {

// ...

 handleFormSubmit(evt) {

 this.fetchCurrentTime();

 }

// ...

}

Get the current time

PST A chronic string message (such as 7 hours from now)Update request

We'll be making a request from: https://andthetimeis.com/PST/now.json

Try playing around with the demo and passing in different chronic options.
It's actually quite fun.

In any case, today we worked on quite a bit to get remote data into our app.
However, at this point, we only have a single page in our single page app.
What if we want to show a different page in our app? Tomorrow, we're going
to start adding multiple pages in our app so we can feature different views.

163

164

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-17/post.md)

Client-side Routing

Most, if not all of our applications will have multiple views in our
single-page application. Let's dive right into creating multiple
views for our applications using React Router.

We've made it through 16 days already! Pat yourself on the back... but not for
too long... there is still a lot more.

Right now, our app is limited to a single page. It's pretty rare to find any
complex application that shows a single view. For instance, an application
might have a login view where a user can log in or a search results page that
shows a user a list of their search results. These are two different views with
two different page structures.

Let's see how we can change that with our app today.

We'll use the very popular react-router (https://github.com/reactjs/react-
router) library for handling different links. In order to use the react-router
library, we'll need to install it using the npm package manager:

npm install --save react-router-dom

165

https://github.com/fullstackreact/30-days-of-react/blob/master/day-17/post.md
https://github.com/reactjs/react-router

With react-router installed, we'll import a few packages from the library and
update our app architecture. Before we make those updates, let's take a step
back and from a high level look at how and why we architect our application
this way.

Conceptually with React, we've seen how we can create tree structures using
components and nested components. Using this perspective with a single
page app with routes, we can think of the different parts of a page as
children. Routing in a single page app from this perspective is the idea that
we can take a part of a subtree and switch it out with another subtree. We
can then dynamically switch out the different trees in the browser.

In other words, we'll define a React component that acts as a root component
of the routable elements. We can then tell React to change a view, which can
just swap out an entire React component for another one as though it's a
completely different page rendered by a server.

We'll take our App component and define all of the different routes we can
make in our app in this App component. We'll need to pull some components
from the react-router package. These components we'll use to set up this
structure are as follows:

<BrowserRouter /> / <Router />
166

This is the component we'll use to define the root or the routing tree. The
<BrowserRouter /> component is the component where React will replace it's
children on a per-route basis.

We'll use the <Route /> component to create a route available at a specific
location available at a url. The <Route /> component is mounted at page
URLs that match a particular route set up in the route's configuration props .

One older, compatible way of handling client-side navigation is to use the #
(hash) mark denoting the application endpoint. We'll use this method. We'll
need this object imported to tell the browser this is how we want to handle
our navigation.

From the app we created a few days ago's root directory, let's update our
src/App.js to import these modules. We'll import the BrowserRouter using a
different name syntax via ES6:

import React from "react";

import { BrowserRouter as Router, Route } from "react-router-dom";

export class App extends React.Component {

 render() {

 <Router>{/* routes will go here */}</Router>;

 }

}

Now let's define our first route. To define a route, we'll use the <Route />
component export from react-router and pass it a few props:

path - The path for the route to be active
component - The component that defines the view of the route

Let's define the a route at the root path / with a stateless component that
just displays some static content:

<Route />

167

const Home = () => (

 <div>

 <h1>Welcome home</h1>

 </div>

);

// ...

class App extends React.Component {

 render() {

 return (

 <Router>

 <Route path="/" component={Home} />

 </Router>

);

 }

}

Loading this page in the browser, we can see we get our single route at the
root url. Not very exciting. Let's add a second route that shows an about page
at the /about URL.

Welcome home

168

const Home = () => (

 <div>

 <h1>Welcome home</h1>

 </div>

);

// ...

class App extends React.Component {

 render() {

 return (

 <Router>

 <div>

 <Route path="/" component={Home} />

 <Route path="/about" component={About} />

 </div>

 </Router>

);

 }

}

Welcome home

In our view we'll need to add a link (or an anchor tag -- <a />) to enable our
users to travel freely between the two different routes. However, using the
<a /> tag will tell the browser to treat the route like it's a server-side route.
Instead, we'll need to use a different component (surprise) called: <Link /> .

The <Link /> component requires a prop called to to point to the client-
side route where we want to render. Let's update our Home and About
components to use the Link :

169

import { BrowserRouter as Router, Route, Link } from "react-router-

dom";

const Home = () => (

 <div>

 <h1>Welcome home</h1>

 <Link to="/about">Go to about</Link>

 </div>

);

const About = () => (

 <div>

 <h1>About</h1>

 <Link to="/">Go home</Link>

 </div>

);

// ...

Welcome home
Go to about

Wait a minute... we don't quite want both routes to show up... This happens
because the react router will render all content that matches the path (unless
otherwise specified). For this case, react router supplies us with the Switch
component.

The <Switch /> component will only render the first matching route it finds.
Let's update our component to use the Switch component. As react router
will try to render both components, we'll need to specify that we only want an
exact match on the root component.

170

http://localhost:3020/about

import { BrowserRouter as Router, Route, Link, Switch } from "react-

router-dom";

// ...

const Home = () => (

 <div>

 <h1>Welcome home</h1>

 <Link to="/about">Go to about</Link>

 </div>

);

// ...

class App extends React.Component {

 render() {

 return (

 <Router>

 <Switch>

 <Route path="/about" component={About} />

 <Route path="/" component={Home} />

 </Switch>

 </Router>

);

 }

}

Welcome home
Go to about

Showing views

171

http://localhost:3020/about

Although this is a limited introduction, we could not leave the discussion of
dealing with react router without talking about the different ways we can get
subcomponents to render.

We've already seen the simplest way possible, using the component prop,
however there is a more powerful method using a prop called render . The
render prop is expected to be a function that will be called with the match
object along with the location and route configuration.

The render prop allows us to render whatever we want in a subroute, which
includes rendering other routes. Nifty, ey? Let's see this in action:

172

const Home = () => (

 <div>

 <h1>Welcome home</h1>

 <Link to="/about">Go to about</Link>

 </div>

);

const About = ({ name }) => (

 <div>

 <h1>About {name}</h1>

 </div>

);

// ...

class App extends React.Component {

 render() {

 return (

 <Router>

 <Switch>

 <Route

 path="/about"

 render={renderProps => (

 <div>

 <Link to="/about/ari">Ari</Link>

 <Link to="/about/nate">Nate</Link>

 <Route

 path="/about/:name"

 render={renderProps => (

 <div>

 <About name={renderProps.match.params.name} />

 <Link to="/">Go home</Link>

 </div>

)}

 />

 </div>

)}

 />

 <Route

 path="/"

 render={renderProps => (

 <div>

 Home is underneath me

 <Home {...this.props} {...renderProps} />

 </div>

173

)}

 />

 </Switch>

 </Router>

);

 }

}

Home is underneath me

Welcome home
Go to about

Now we have multiple pages in our application. We've looked at how we can
render these routes through nested components with just a few of the
exports from react-router .

react-router provides so much more functionality that we don't have time
to cover in our brisk intro to routing. More information is available at:

https://github.com/reactjs/react-router/tree/master/docs
(https://github.com/reactjs/react-router/tree/master/docs)
fullstack react routing (https://fullstackreact.com)

Tomorrow, we're going to be starting integration with Redux. Here's where
we start integrating more complex data handling.

174

http://localhost:3020/about
https://github.com/reactjs/react-router/tree/master/docs
https://fullstackreact.com/

175

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-18/post.md)

Introduction to Flux

Handling data inside a client-side application is a complex task.
Today we're looking at a one method of handling complex data
proposed by Facebook called the Flux Architecture.

As our applications get bigger and more complex, we'll need a better data
handling approach. With more data, we'll have more to keep track of.

Our code is required to handle more data and application state with new
features. From asynchronous server responses to locally-generated,
unsynchronized data, we have to not only keep track of this data, but also tie
it to the view in a sane way.

Recognizing this need for data management, the Facebook team released a
pattern for dealing with data called Flux
(https://facebook.github.io/flux/docs/overview.html).

Today, we're going to take a look at the Flux architecture, what it is and why
it exists.

Flux is a pattern for managing how data flows through a React application. As
we've seen, the preferred method of working with React components is
through passing data from one parent component to it's children

What is flux

176

https://github.com/fullstackreact/30-days-of-react/blob/master/day-18/post.md
https://facebook.github.io/flux/docs/overview.html

components. The Flux pattern makes this model the default method for
handling data.

There are three distinct roles for dealing with data in the flux methodology:

Dispatcher
Stores
Views (our components)

The major idea behind Flux is that there is a single-source of truth (the
stores) and they can only be updated by triggering actions. The actions are
responsible for calling the dispatcher, which the stores can subscribe for
changes and update their own data accordingly.

When a dispatch has been triggered, and the store updates, it will emit a
change event which the views can rerender accordingly.

This may seem unnecessarily complex, but the structure makes it incredibly
easy to reason about where our data is coming from, what causes it's
changes, how it changes, and lets us track specific user flows, etc.

The key idea behind Flux is:

Data flows in one direction and kept entirely in the stores.

Although we can create our own flux implementation, many have already
created some fantastic libraries we can pick from.

Facebook's flux (https://github.com/facebook/flux)

Implementations

177

https://github.com/facebook/flux

alt (http://alt.js.org/)
nuclear-js (https://optimizely.github.io/nuclear-js/)
Fluxible (http://fluxible.io/)
reflux (https://github.com/reflux/refluxjs)
Fluxxor (http://fluxxor.com/)
flux-react (https://github.com/christianalfoni/flux-react)
And more... many many more

We discuss this material in-depth about Flux, using libraries, and even
implementing our own version of flux that suits us best. Check it out at
fullstackreact.com (https://fullstackreact.com)

It can be pretty intense trying to pick the right choice for our applications.
Each has their own features and are great for different reasons. However, to a
large extent, the React community has focused in on using another flux tool
called Redux (http://redux.js.org/).

Redux is a small-ish library that takes it's design inspiration from the Flux
pattern, but is not itself a pure flux implementation. It provides the same
general principles around how to update the data in our application, but in
slightly different way.

Unlike Flux, Redux does not use a dispatcher, but instead it uses pure
functions to define data mutating functions. It still uses stores and actions,
which can be tied directly to React components.

The 3 major principles
(http://redux.js.org/docs/introduction/ThreePrinciples.html) of Redux we'll
keep in mind as we implement Redux in our app are:

Plug for fullstackreact

Redux (http://redux.js.org/)

178

http://alt.js.org/
https://optimizely.github.io/nuclear-js/
http://fluxible.io/
https://github.com/reflux/refluxjs
http://fluxxor.com/
https://github.com/christianalfoni/flux-react
https://fullstackreact.com/
http://redux.js.org/
http://redux.js.org/docs/introduction/ThreePrinciples.html
http://redux.js.org/

Updates are made with pure functions (in reducers)
state is a read-only property
state is the single source of truth (there is only one store in a Redux
app)

One big difference with Redux and Flux is the concept of middleware. Redux
added the idea of middleware that we can use to manipulate actions as we
receive them, both coming in and heading out of our application. We'll
discuss them in further detail in a few days.

In any case, this is a lot of introduction to the flux pattern. Tomorrow we'll
actually start moving our data to use Redux.

179

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-19/post.md)

Data Management with Redux

With the knowledge of flux and Redux, let's integrate Redux in
our application and walk through connected applications.

Yesterday, we discussed (in light detail) the reason for the Flux pattern, what
it is, the different options we have available to us, as well as introduced Redux
(http://redux.js.org/).

Today, we are going to get back to code and on to adding Redux in our app.
The app we're building with it right now is bare-bones simple, which will just
show us the last time the page fetched the current time. For simplicity for
now, we won't call out to a remote server, just using the JavaScript Date
object.

The first thing we'll have to do to use Redux is install the library. We can use
the npm package manager to install redux . In the root directory of our app
we previously built, let's run the npm install command to install redux:

npm install --save redux

We'll also need to install another package that we'll use with redux, the
react-redux that will help us tie together react and redux :

npm install --save react-redux

180

https://github.com/fullstackreact/30-days-of-react/blob/master/day-19/post.md
http://redux.js.org/

The next bit of work we need to do is to set up Redux inside of our app. We'll
need to do the following to get it set up:

1. Define reducers
2. Create a store
3. Create action creators
4. Tie the store to our React views
5. Profit

No promises on step 5, but it would be nice, eh?

We'll talk terminology as we go, so take this setup discussion lightly
(implementing is more important to get our fingers moving). We'll
restructure our app just slightly (annoying, I know... but this is the last time)

Configuration and setup

Precursor

181

so we can create a wrapper component to provide data down through our
app.

When we're complete, our app tree will have the following shape:

[Root] -> [App] -> [Router/Routes] -> [Component]

Without delaying any longer, let's move our src/App.js into the
src/containers directory and we'll need to update some of the paths from
our imports at the same time. We'll be using the react router material we
discussed a few days ago.

We'll include a few routes with the <Switch /> statement to ensure only one
shows up at a time.

import React from "react";

import { BrowserRouter as Router, Route, Switch } from "react-router-

dom";

// We'll load our views from the `src/views`

// directory

import Home from "./views/Home/Home";

import About from "./views/About/About";

const App = props => {

 return (

 <Router>

 <Switch>

 <Route path="/about" component={About} />

 <Route path="*" component={Home} />

 </Switch>

 </Router>

);

};

export default App;

182

In addition, we'll need to create a new container we'll call Root which will
wrap our entire <App /> component and make the store available to the rest
of the app. Let's create the src/containers/Root.js file:

touch src/containers/Root.js

For the time being, we'll use a placeholder component here, but we'll replace
this content as we talk about the store. For now, let's export something:

import React from "react";

import App from "./App";

const Root = props => {

 return <App />;

};

export default Root;

Finally, let's update the route that we render our app in the src/index.js file
to use our new Root container instead of the App it previously used.

import React from "react";

import ReactDOM from "react-dom";

import Root from "./containers/Root";

import "./index.css";

ReactDOM.render(<Root />, document.getElementById("root"));

Now with a solid app structure in place, we can start to add in Redux. The
steps we'll take to tie in some Redux structure are generally all the same for
most every application we'll build. We'll need to:

1. Write a root reducer
2. Write actionCreators

Adding in Redux

183

3. Configure the store with the rootReducer, the store, and the app
4. Connect the views to the actionCreators

We'll purposefully be keeping this high-level introduction a tad short, so hang
tight if that's a mouthful, it will all make more sense shortly.

Let's setup the structure to allow us to add redux. We'll do almost all of our
work in a src/redux directory. Let's create that directory.

mkdir -p src/redux

touch src/redux/configureStore.js

touch src/redux/reducers.js

Let's start by creating our reducer first. Although it sounds complex, a
reducer is actually pretty straight-forward with some experience. A reducer
is literally only a function. It's sole responsibility is to return a representation
of the next state.

In the Redux pattern, unlike flux we are only handling one global store for the
entire application. This makes things much easier to deal with as there's a
single place for the data of our application to live.

The root reducer function is responsible to return a representation of the
current global state of the application. When we dispatch an action on the
store, this reducer function will be called with the current state of the
application and the action that causes the state to update.

Let's build our root reducer in a file at src/redux/reducers.js .

184

// Initial (starting) state

export const initialState = {

 currentTime: new Date().toString()

};

// Our root reducer starts with the initial state

// and must return a representation of the next state

export const rootReducer = (state = initialState, action) => {

 return state;

};

In the function, we're defining the first argument to start out as the initial
state (the first time it runs, the rootReducer is called with no arguments, so it
will always return the initialState on the first run).

That's the rootReducer for now. As it stands right now, the state always will
be the same value as the initialState. In our case, this means our data tree has
a single key of currentTime .

The second argument here is the action that gets dispatched from the store.
We'll come back to what that means exactly shortly. For now, let's look at the
action.

At the very minimum, an action must include a type key. The type key can
be any value we want, but it must be present. For instance, in our application,
we'll occassionally dispatch an action that we want to tell the store to get the
new current time. We might call this action a string value of FETCH_NEW_TIME .

The action we might dispatch from our store to handle this update looks like:

{

 type: "FETCH_NEW_TIME"

}

What is an action?

185

As we'll by typing this string a lot and we want to avoid a possible mispelling
somewhere, it's common to create a types.js file that exports the action
types as constants. Let's follow this convention and create a
src/redux/types.js file:

export const FETCH_NEW_TIME = "FETCH_NEW_TIME";

Instead of calling the action with the hard-coded string of
'FETCH_NEW_TIME', we'll reference it from the types.js file:

import * as types from './types';

{

 type: types.FETCH_NEW_TIME,

}

When we want to send data along with our action, we can add any keys we
want to our action. We'll commonly see this called payload , but it can be
called anything. It's a convention to call additional information the payload .

Our FETCH_NEW_TIME action will send a payload with the new current time.
Since we want to send a serializable value with our actions, we'll send the
string value of the new current time.

{

 type: types.FETCH_NEW_TIME,

 payload: new Date().toString() // Any serializable value

}

Back in our reducer, we can check for the action type and take the
appropriate steps to create the next state. In our case, we'll just store the
payload . If the type of the action is FETCH_NEW_TIME , we'll return the new
currentTime (from our action payload) and the rest of the state (using the
ES6 spread syntax):

186

export const rootReducer = (state = initialState, action) => {

 switch (action.type) {

 case types.FETCH_NEW_TIME:

 return { ...state, currentTime: action.payload };

 default:

 return state;

 }

};

Remember, the reducers must return a state, so in the default case, make
sure to return the current state at the very minimum.

Since the reducer functions run everytime an action is dispatched, we
want to make sure these functions are as simple and fast as possible. We
don't want them to cause any side-effects or have much delay at all.

We'll handle our side-effects outside of the reducer in the action creators.

Before we look at action creators (and why we call them action creators), let's
hook up our store to our application.

We'll be using the react-redux package to connect our views to our redux
store. Let's make sure to install this package using npm :

npm install --save react-redux

The react-redux package exports a component called Provider . The
Provider component makes the store available to all of our container
components in our application without needing for us to need to pass it in

Keep it light

Hooking up the store to the view

187

manually every time.

The Provider component expects a store prop that it expects to be a valid
redux store, so we'll need to complete a configureStore function before our
app will run without error. For now, let's hook up the Provider component in
our app. We'll do this by updating our wrapper Root component we
previously created to use the Provider component.

import { Provider } from "react-redux";

// ...

const Root = props => {

 // ...

 return (

 <Provider store={store}>

 <App />

 </Provider>

);

};

Notice we're sending in the store value to our Provider component... but
we haven't created the store yet! Let's fix that now.

In order to create a store, we'll use the new src/redux/configureStore.js to
export a function which will be responsible for creating the store.

How do we create a store?

The redux package exports a function called createStore which will create
the actual store for us, so let's open up the src/redux/configureStore.js file
and export a function (we'll define shortly) called configureStore() and
import the createStore helper:

Configuring the store

188

import { createStore } from "redux";

// ...

export const configureStore = () => {

 // ...

};

// ...

export default configureStore;

We don't actually return anything in our store quite yet, so let's actually
create the redux store using the createStore function we imported from
redux:

import { createStore } from "redux";

export const configureStore = () => {

 const store = createStore();

 return store;

};

export default configureStore;

Now let's update our Root.js file with an instance of the store created by
calling the configureStore() function.

// ...

import configureStore from "../redux/configureStore";

const Root = props => {

 const store = configureStore();

 return (

 <Provider store={store}>

 <App />

 </Provider>

);

};

189

If we load our page in the browser, we'll see we have one giant error and no
page gets rendered.

The error redux is giving us is telling us that we don't have a reducer inside
our store. Without a reducer, it won't know what to do with actions or how to
create the state, etc. In order to move beyond this error, we'll need to
reference our rootReducer we created.

The createStore function expects us to pass the rootReducer in as the first
argument. It'll also expect the initial state to be passed in as the second
argument. We'll import both of these values from the reducers.js file we
created.

import { rootReducer, initialState } from "./reducers";

// ...

export const configureStore = () => {

 const store = createStore(

 rootReducer, // root reducer

 initialState // our initialState

);

 return store;

};

Connecting the view (cont'd)
190

Everything in our app is set-up to use Redux without too much overhead.
One more convenience that redux offers is a way to bind pieces of the state
tree to different components using the connect() function exported by the
react-redux package.

The connect() function returns a function that expects the 1st argument to
be that of a component. This is often called a higher-order component.

The connect() function expects us to pass in at least one argument to the
function (but often we'll pass in two). The first argument it expects is a
function that will get called with the state and expects an object in return
that connects data to the view. Let's see if we can demystify this behavior in
code.

We'll call this function the mapStateToProps function. Since it's responsibility
is to map the state to an object which is merged with the component's
original props .

Let's create the Home view in src/views/Home.js and use this connect()
function to bind the value of currentTime in our state tree.

import { connect } from "react-redux";

// ...

const mapStateToProps = state => {

 return {

 currentTime: state.currentTime

 };

};

export default connect(mapStateToProps)(Home);

This connect() function automatically passes any of the keys in the
function's first argument as props to the Home component.

Connecting the view (cont'd)

191

In our demo's case, the currentTime prop in the Home component will be
mapped to the state tree key at currentTime . Let's update the Home
component to show the value in the currentTime :

const Home = props => {

 return (

 <div className="home">

 <h1>Welcome home!</h1>

 <p>Current time: {props.currentTime}</p>

 </div>

);

};

Although this demo isn't very interesting, it shows we have our Redux app set
up with our data committed to the global state and our view components
mapping the data.

Welcome home!
Current time: Thu Feb 27 2020 16:01:42 GMT0600 (CST)

Tomorrow we're going to start triggering updates into our global state
through action creators as well as work through combining multiple redux
modules together.

192

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-20/post.md)

Redux actions

With Redux in place, let's talk about how we actually modify the
Redux state from within our applications.

Yesterday we went through the difficult part of integrating our React app
with Redux. From here on out, we'll be defining functionality with our Redux
setup.

As it stands now, we have our demo application showing the current time.
But there currently isn't any way to update to the new time. Let's modify this
now.

Recall that the only way we can change data in Redux is through an action
creator. We created a redux store yesterday, but we haven't created a way for
us to update the store.

Welcome home!
Current time: Thu Feb 27 2020 16:01:45 GMT0600 (CST)

What we want is the ability for our users to update the time by clicking on a
button. In order to add this functionality, we'll have to take a few steps:

Triggering updates

193

https://github.com/fullstackreact/30-days-of-react/blob/master/day-20/post.md

1. Create an actionCreator to dispatch the action on our store
2. Call the actionCreator onClick of an element
3. Handle the action in the reducer

We already implemented the third step, so we only have two things to do to
get this functionality working as we expect.

Yesterday, we discussed what actions are, but not really why we are using
this thing called actionCreators or what they are.

As a refresher, an action is a simple object that must include a type value. We
created a types.js file that holds on to action type constants, so we can use
these values as the type property.

export const FETCH_NEW_TIME = 'FETCH_NEW_TIME';

export const LOGIN = 'USER_LOGIN';

export const LOGOUT = 'USER_LOGOUT';

As a quick review, our actions can be any object value that has the type key.
We can send data along with our action (conventionally, we'll pass extra data
along as the payload of an action).

{

 type: types.FETCH_NEW_TIME,

 payload: new Date().toString()

}

Now we need to dispatch this along our store . One way we could do that is
by calling the store.dispatch() function.

store.dispatch({

 type: types.FETCH_NEW_TIME,

 payload: new Date().toString()

})

194

However, this is pretty poor practice. Rather than dispatch the action
directly, we'll use a function to return an action... the function will create the
action (hence the name: actionCreator). This provides us with a better testing
story (easy to test), reusability, documentation, and encapsulation of logic.

Let's create our first actionCreator in a file called redux/actionCreators.js .
We'll export a function who's entire responsibility is to return an appropriate
action to dispatch on our store.

import * as types from './types';

export const fetchNewTime = () => ({

 type: types.FETCH_NEW_TIME,

 payload: new Date().toString(),

})

Now if we call this function, nothing will happen except an action object is
returned. How do we get this action to dispatch on the store?

Recall we used the connect() function export from react-redux yesterday?
The first argument is called mapStateToProps , which maps the state to a prop
object. The connect() function accepts a second argument which allows us
to map functions to props as well. It gets called with the dispatch function,
so here we can bind the function to call dispatch() on the store.

Let's see this in action. In our src/views/Home/Home.js file, let's update our
call to connect by providing a second function to use the actionCreator we
just created. We'll call this function mapDispatchToProps .

195

import { fetchNewTime } from '../../../redux/actionCreators';

 // ...

const mapDispatchToProps = dispatch => ({

 updateTime: () => dispatch(fetchNewTime())

})

 // ...

export default connect(

 mapStateToProps,

 mapDispatchToProps,

)(Home);

Now the updateTime() function will be passed in as a prop and will call
dispatch() when we fire the action. Let's update our <Home /> component
so the user can press a button to update the time.

const Home = (props) => {

 return (

 <div className="home">

 <h1>Welcome home!</h1>

 <p>Current time: {props.currentTime}</p>

 <button onClick={props.updateTime}>

 Update time

 </button>

 </div>

);

}

Welcome home!
Current time: Thu Feb 27 2020 16:01:45 GMT0600 (CST)

Update time

196

Although this example isn't that exciting, it does showcase the features of
redux pretty well. Imagine if the button makes a fetch to get new tweets or
we have a socket driving the update to our redux store. This basic example
demonstrates the full functionality of redux.

As it stands now, we have a single reducer for our application. This works for
now as we only have a small amount of simple data and (presumably) only one
person working on this app. Just imagine the headache it would be to develop
with one gigantic switch statement for every single piece of data in our apps...

Ahhhhhhhhhhhhhh...

Redux to the rescue! Redux has a way for us to split up our redux reducers
into multiple reducers, each responsible for only a leaf of the state tree.

We can use the combineReducers() export from redux to compose an object
of reducer functions. For every action that gets triggered, each of these
functions will be called with the corresponding action. Let's see this in action.

Let's say that we (perhaps more realistically) want to keep track of the
current user. Let's create a currentUser redux module in... you guessed it:
src/redux/currentUser.js :

touch src/redux/currentUser.js

We'll export the same four values we exported from the currentTime
module... of course, this time it is specific to the currentUser. We've added a
basic structure here for handling a current user:

Multi-reducers

197

import * as types from './types'

export const initialState = {

 user: {},

 loggedIn: false

}

export const reducer = (state = initialState, action) => {

 switch (action.type) {

 case types.LOGIN:

 return {

 ...state, user: action.payload, loggedIn: true};

 case types.LOGOUT:

 return {

 ...state, user: {}, loggedIn: false};

 default:

 return state;

 }

}

Let's update our configureStore() function to take these branches into
account, using the combineReducers to separate out the two branches

198

import { createStore, combineReducers } from 'redux';

import { rootReducer, initialState } from './reducers'

import { reducer, initialState as userInitialState } from

'./currentUser'

export const configureStore = () => {

 const store = createStore(

 combineReducers({

 time: rootReducer,

 user: reducer

 }), // root reducer

 {

 time: initialState,

 user: userInitialState

 }, // our initialState

);

 return store;

}

export default configureStore;

Let's also update our Home component mapStateToProps function to read it's
value from the time reducer

// ...

const mapStateToProps = state => {

 // our redux store has `time` and `user` states

 return {

 currentTime: state.time.currentTime

 };

};

// ...

Now we can create the login() and logout() action creators to send along
the action on our store.

199

export const login = (user) => ({

 type: types.LOGIN,

 payload: user

})

 // ...

export const logout = () => ({

 type: types.LOGOUT,

})

Now we can use the actionCreators to call login and logout just like the
updateTime() action creator.

Phew! This was another hefty day of Redux code. Today, we completed the
circle between data updating and storing data in the global Redux state. In
addition, we learned how to extend Redux to use multiple reducers and
actions as well as multiple connected components.

However, we have yet to make an asynchronous call for off-site data.
Tomorrow we'll get into how to use middleware with Redux, which will give
us the ability to handle fetching remote data from within our app and still use
the power of Redux to keep our data.

Good job today and see you tomorrow!

200

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-21/post.md)

Redux Middleware

Today, we're looking at the Redux method of managing complex
state changes in our code using Redux middleware.

Yesterday we connected the dots with Redux, from working through
reducers, updating action creators, and connecting Redux to React

components. Redux middleware unlocks even more power which we'll touch
on today.

Middleware generally refers to software services that "glue together"
separate features in existing software. For Redux, middleware provides a
third-party extension point between dispatching an action and handing the
action off to the reducer:

[Action] <-> [Middleware] <-> [Dispatcher]

Examples of middleware include logging, crash reporting, routing, handling
asynchronous requests, etc.

Let's take the case of handling asynchronous requests, like an HTTP call to a
server. Middleware is a great spot to do this.

Redux middleware

Our API middleware
201

https://github.com/fullstackreact/30-days-of-react/blob/master/day-21/post.md

We'll implement some middleware that will handle making asynchronous
requests on our behalf.

Middleware sits between the action and the reducer. It can listen for all
dispatches and execute code with the details of the actions and the current
states. Middleware provides a powerful abstraction. Let's see exactly how we
can use it to manage our own.

Continuing with our currentTime redux work from yesterday, let's build our
middleware to fetch the current time from the server we used a few days ago
to actually GET the time from the API service.

Before we get too much further, let's pull out the currentTime work from the
rootReducer in the reducers.js file out to it's own file. We left the root
reducer in a state where we kept the currentTime work in the root reducer.
More conventionally, we'll move these in their own files and use the
rootReducer.js file (which we called reducers.js) to hold just the main
combination reducer.

First, let's pull the work into it's own file in redux/currentTime.js . We'll
export two objects from here (and each reducer):

initialState - the initial state for this branch of the state tree
reducer - this branch's reducer

202

import * as types from './types';

export const initialState = {

 currentTime: new Date().toString(),

}

export const reducer = (state = initialState, action) => {

 switch(action.type) {

 case types.FETCH_NEW_TIME:

 return { ...state, currentTime: action.payload}

 default:

 return state;

 }

}

export default reducer

With our currentTime out of the root reducer, we'll need to update the
reducers.js file to accept the new file into the root reducer. Luckily, this is
pretty easy:

import { combineReducers } from 'redux';

import * as currentUser from './currentUser';

import * as currentTime from './currentTime';

export const rootReducer = combineReducers({

 currentTime: currentTime.reducer,

 currentUser: currentUser.reducer,

})

export const initialState = {

 currentTime: currentTime.initialState,

 currentUser: currentUser.initialState,

}

export default rootReducer

203

Lastly, let's update the configureStore function to pull the rootReducer and
initial state from the file:

import { rootReducer, initialState } from './reducers'

// ...

export const configureStore = () => {

 const store = createStore(

 rootReducer,

 initialState,

);

 return store;

}

Middleware is basically a function that accepts the store , which is expected
to return a function that accepts the next function, which is expected to
return a function which accepts an action. Confusing? Let's look at what this
means.

Let's build the smallest middleware we possibly can to understand exactly
what's happening and how to add it to our stack.

Let's create our first middleware.

Now the signature of middleware looks like this:

// src/redux/loggingMiddleWare.js

const loggingMiddleware = (store) => (next) => (action) => {

 // Our middleware

}

export default loggingMiddleware;

Back to middleware

The simplest middleware possible

204

Befuddled about this middleware thing? Don't worry, we all are the first time
we see it. Let's peel it back a little bit and destructure what's going on. That
loggingMiddleware description above could be rewritten like the following:

const loggingMiddleware = function(store) {

 // Called when calling applyMiddleware so

 // our middleware can have access to the store

 return function(next) {

 // next is the following action to be run

 // after this middleware

 return function(action) {

 // finally, this is where our logic lives for

 // our middleware.

 }

 }

}

We don't need to worry about how this gets called, just that it does get called
in that order. Let's enhance our loggingMiddleware so that we do actually log
out the action that gets called:

const loggingMiddleware = (store) => (next) => (action) => {

 // Our middleware

 console.log(`Redux Log:`, action)

 // call the next function

 next(action);

}

Our middleware causes our store to, when every time an action is called,
we'll get a console.log with the details of the action.

In order to apply middleware to our stack, we'll use this aptly named
applyMiddleware function as the third argument to the createStore()
method.

205

import { createStore, applyMiddleware } from 'redux';

To apply middleware, we can call this applyMiddleware() function in the
createStore() method. In our src/redux/configureStore.js file, let's update
the store creation by adding a call to applyMiddleware() :

// ...

import loggingMiddleware from "./loggingMiddleware";

// ...

const store = createStore(

 rootReducer,

 initialState,

 applyMiddleware(

 loggingMiddleware,

)

);

Now our middleware is in place. Open up the console in your browser to see
all the actions that are being called for this demo. Try clicking on the Update
button with the console open...

Welcome home!
Current time: Thu Feb 27 2020 16:01:49 GMT0600 (CST)

Update time

As we've seen, middleware gives us the ability to insert a function in our
Redux action call chain. Inside that function, we have access to the action,
state, and we can dispatch other actions.

We want to write a middleware function that can handle API requests. We
can write a middleware function that listens only to actions corresponding to
API requests. Our middleware can "watch" for actions that have a special

206

marker. For instance, we can have a meta object on the action with a type of
'api' . We can use this to ensure our middleware does not handle any
actions that are not related to API requests:

// src/redux/apiMiddleware.js

const apiMiddleware = store => next => action => {

 if (!action.meta || action.meta.type !== 'api') {

 return next(action);

 }

 // This is an api request

}

export default apiMiddleware

If an action does have a meta object with a type of 'api' , we'll pick up the
request in the apiMiddleware .

Let's convert our fetchNewTime() actionCreator to include these properties
into an API request. Let's open up the actionCreators redux module we've
been working with (in src/redux/actionCreators.js) and find the
fetchNewTime() function definition.

Let's pass in the URL to our meta object for this request. We can even accept
parameters from inside the call to the action creator:

const host = 'https://andthetimeis.com'

export const fetchNewTime = (timezone = 'pst', str='now') => ({

 type: types.FETCH_NEW_TIME,

 payload: new Date().toString(),

 meta: {

 type: 'api',

 url: host + '/' + timezone + '/' + str + '.json'

 }

})

When we press the button to update the time, our apiMiddleware will catch
this before it ends up in the reducer. For any calls that we catch in the
middleware, we can pick apart the meta object and make requests using

207

these options. Alternatively, we can just pass the entire sanitized meta object
through the fetch() API as-is.

The steps our API middleware will have to take:

1. Find the request URL and compose request options from meta
2. Make the request
3. Convert the request to a JavaScript object
4. Respond back to Redux/user

Let's take this step-by-step. First, to pull off the URL and create the
fetchOptions to pass to fetch() . We'll put these steps in the comments in
the code below:

208

const apiMiddleware = store => next => action => {

 if (!action.meta || action.meta.type !== 'api') {

 return next(action);

 }

 // This is an api request

 // Find the request URL and compose request options from meta

 const {url} = action.meta;

 const fetchOptions = Object.assign({}, action.meta);

 // Make the request

 fetch(url, fetchOptions)

 // convert the response to json

 .then(resp => resp.json())

 .then(json => {

 // respond back to the user

 // by dispatching the original action without

 // the meta object

 let newAction = Object.assign({}, action, {

 payload: json.dateString

 });

 delete newAction.meta;

 store.dispatch(newAction);

 })

}

export default apiMiddleware

We have several options for how we respond back to the user in the Redux
chain. Personally, we prefer to respond with the same type the request was
fired off without the meta tag and placing the response body as the payload
of the new action.

In this way, we don't have to change our redux reducer to manage the
response any differently than if we weren't making a request.

We're also not limited to a single response either. Let's say that our user
passed in an onSuccess callback to be called when the request was complete.
We could call that onSuccess callback and then dispatch back up the chain:

209

const apiMiddleware = store => next => action => {

 if (!action.meta || action.meta.type !== 'api') {

 return next(action);

 }

 // This is an api request

 // Find the request URL and compose request options from meta

 const {url} = action.meta;

 const fetchOptions = Object.assign({}, action.meta);

 // Make the request

 fetch(url, fetchOptions)

 // convert the response to json

 .then(resp => resp.json())

 .then(json => {

 if (typeof action.meta.onSuccess === 'function') {

 action.meta.onSuccess(json);

 }

 return json; // For the next promise in the chain

 })

 .then(json => {

 // respond back to the user

 // by dispatching the original action without

 // the meta object

 let newAction = Object.assign({}, action, {

 payload: json.dateString

 });

 delete newAction.meta;

 store.dispatch(newAction);

 })

}

The possibilities here are virtually endless. Let's add the apiMiddleware to
our chain by updating it in the configureStore() function:

210

import { createStore, applyMiddleware } from 'redux';

import { rootReducer, initialState } from './reducers'

import loggingMiddleware from './loggingMiddleware';

import apiMiddleware from './apiMiddleware';

export const configureStore = () => {

 const store = createStore(

 rootReducer,

 initialState,

 applyMiddleware(

 apiMiddleware,

 loggingMiddleware,

)

);

 return store;

}

export default configureStore;

Welcome home!
Current time: Thu Feb 27 2020 16:01:49 GMT0600 (CST)

Update time

Notice that we didn't have to change any of our view code to update how the
data was populated in the state tree. Pretty nifty, eh?

This middleware is pretty simplistic, but it's a good solid basis for building it
out. Can you think of how you might implement a caching service, so that we
don't need to make a request for data we already have? How about one to
keep track of pending requests, so we can show a spinner for requests that
are outstanding?

Awesome! Now we really are Redux ninjas. We've conquered the Redux
mountain and are ready to move on to the next step. Before we head there,
however... pat yourself on the back. We've made it through week 3!

211

212

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-22/post.md)

Introduction to Testing

Test suites are an upfront investment that pay dividends over
the lifetime of a system. Today we'll introduce the topic of
testing and discuss the different types of tests we can write.

Okay, close your eyes for a second... wait, don't... it's hard to read with your
eyes closed, but imagine for a moment your application is getting close to
your first deployment.

It's getting close and it gets tiring to constantly run through the features in
your browser... and so inefficient.

There must be a better way...

When we talk about testing, we're talking about the process of automating
the process of setting up and measuring our assumptions against assertions
of functionality about our application.

When we talk about front-end testing in React, we're referring to the process
of making assertions about what our React app renders and how it responds
to user interaction.

We'll discuss three different software testing paradigms: unit testing,
functional testing, and integration testing.

Testing

Unit tests
213

https://github.com/fullstackreact/30-days-of-react/blob/master/day-22/post.md

Unit testing refers to testing individual pieces (or units, hence the name) of
our our code so we can be confident these specific pieces of code work as we
expect.

For example, we have a few reducers already in our application. These
reducers comprise a single function that we can make assertions on under
different scenarios.

In React, Unit tests typically do not require a browser, can run incredibly
quickly (no writing to the DOM required), and the assertions themselves are
usually simple and terse.

We'll mostly concentrate on answering the question: with a given set of
inputs (state and props), does the output match our expectations of what
should be in the virtual dom. In this case, we're testing the rendering output.

With functional testing, we're focused on testing the behavior of our
component. For instance, if we have a navigation bar with a user login/logout
button, we can test our expectations that:

Given a logged in user, the navbar renders a button with the text Logout
Given no logged in user, the navbar renders a button with the text Login

Functional tests usually run in isolation (i.e. testing the component
functionality without the rest of the application).

Finally, the last type of testing we'll look at is integration testing. This type of
testing tests the entire service of our application and attempts to replicate
the experience an end-user would experience when using our application.

Unit tests

Functional testing

Integration testing

214

On the order of speed and efficiency, integration testing is incredibly slow as
it needs to run expectations against a live, running browser, where as unit
and functional tests can run quite a bit faster (especially in React where the
functional test is testing against the in-memory virtual dom rather than an
actual browser render).

When testing React components, we will test both our expectations of what
is contained in the virtual dom as well as what is reflected in the actual dom.

We're going to use a testing library called called jasmine
(http://jasmine.github.io) to provide a readable testing language and
assertions.

As far as test running, there is a general debate around which test runner is
the easiest/most efficient to work with, largely between mocha
(https://mochajs.org) and jest (https://facebook.github.io/jest).

We're going to use Jest in our adventure in testing with React as it's the
official (take this with a grain of salt) test runner. Most of the code we'll be
writing will be in Jasmine, so feel free to use mocha, if it's your test library of
choice.

Finally, we'll use a library we cannot live without called Enzyme
(https://github.com/airbnb/enzyme) which puts the fun back in FUNctional
testing. Enzyme provides some pretty nice React testing utility functions that
make writing our assertions a cinch.

Tomorrow, we'll get our application set up with the testing tooling in place so
that we can start testing our application and be confident it works as we
expect. See you tomorrow!

The tools

215

http://jasmine.github.io/
https://mochajs.org/
https://facebook.github.io/jest
https://github.com/airbnb/enzyme

216

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-23/post.md)

Implementing Tests

Yesterday we examined the different types of tests that we write
in React. Today we'll see it in action. We'll install the
dependencies required to set up tests as well as write our first
assertions.

Let's get our application set up to be tested. Since we're going to be using a
few different libraries, we'll need to install them before we can use them
(obviously).

We're going to use the following npm libraries:

Jest (https://facebook.github.io/jest/) is the official testing framework
released by Facebook and is a fantastic testing framework for testing React
applications. It is incredibly fast, provides sandboxed testing environments,
support for snapshot testing, and more.

Dependencies

jest/jest-cli

babel-jest/babel-preset-stage-0

217

https://github.com/fullstackreact/30-days-of-react/blob/master/day-23/post.md
https://facebook.github.io/jest/

We'll write our tests using the stage 0 (or ES6-edge functionality), so we'll
want to make sure our test framework can read and process our ES6 in our
tests and source files.

Sinon is a test utility library which provides a way for us to write spies, stubs,
and mocks. We'll discuss what these are when we need them, but we'll install
the library for now.

The react-addons-test-utils package contains testing utilities provided by
the React team.

Enzyme (http://airbnb.io/enzyme/), a JavaScript testing library
built/maintained by Airbnb is a bit easier to work with and provides really
nice methods for traversing/manipulating React's virtual DOM output. While
we'll start with react-addons-test-utils , we'll transition to using Enzyme as
we prefer using it in our tests.

The react-test-renderer library allows us to use the snapshot feature from
the jest library. Snapshots are a way for Jest to serialize the rendered output
from the virtual DOM into a file which we can automate comparisons from
one test to the next.

The redux-mock-store (https://github.com/arnaudbenard/redux-mock-
store) library allows us to easily make a redux store for testing. We'll use it to
test our action creators, middleware, and our reducers.

To install all of these libraries, we'll use the following npm command in the
terminal while in the root directory of our projects:

sinon

react-addons-test-utils/enzyme

react-test-renderer

redux-mock-store

218

http://airbnb.io/enzyme/
https://github.com/arnaudbenard/redux-mock-store

yarn add --dev babel-jest babel-preset-stage-0 enzyme enzyme-adapter-

react-16 jest-cli react-addons-test-utils react-test-renderer redux-

mock-store sinon

We'll also need to configure our setup. First, let's add an npm script that will
allow us to run our tests using the npm test command. In our package.json
file in the root of our project, let's add the test script. Find the scripts key in
the package.json file and add the test command, like so:

{

 // ...

 "scripts": {

 "start": "react-scripts start",

 "build": "react-scripts build",

 "eject": "react-scripts eject",

 "test": "react-scripts test --env=jsdom"

 },

}

Let's confirm that our test setup is working properly. Jest will automatically
look for test files in the entire tree in a directory called __tests__ (yes, with
the underscores). Let's create our first __tests__ directory in our
src/components/Timeline directory and create our first test file:

mkdir src/components/Timeline/__tests__

touch src/components/Timeline/__tests__/Timeline-test.js

The Timeline-test.js file will include all the tests for our Timeline
component (as indicated by the filename). Let's create our first test for the
Timeline component.

Configuration

Writing tests

219

We'll write our tests using the Jasmine (http://jasmine.github.io) framework.
Jasmine provides a few methods we'll use quite a bit. Both of the following
methods accept two arguments, the first being a description string and the
second a function to execute:

describe()

it()

The describe() function provides a way for us to group our tests together in
logical bundles. Since we're writing a bunch of tests for our Timeline , we'll
use the describe() function in our test to indicate we're testing the
Timeline.

An hour ago

Ate lunch

10 am

Read Day two article

10 am

Lorem Ipsum is simply dummy text of the printing and
typesetting industry.

2:21 pm

Lorem Ipsum has been the industry's standard dummy
text ever since the 1500s, when an unknown printer
took a galley of type and scrambled it to make a type
specimen book.

Timeline

220

http://jasmine.github.io/

In the src/components/Timeline/__tests__/Timeline-test.js file, let's add
the describe block:

describe("Timeline", () => {});

We can add our first test using the it() function. The it() function is
where we will set our expectations. Let's set up our tests with our first
expectations, one passing and one failing so we can see the difference in
output.

In the same file, let's add two tests:

describe("Timeline", () => {

 it("passing test", () => {

 expect(true).toBeTruthy();

 });

 it("failing test", () => {

 expect(false).toBeTruthy();

 });

});

We'll look at the possible expectations we can set in a moment. First, let's run
our tests.

The create-react-app package sets up a quality testing environment using
Jest automatically for us. We can execute our tests by using the yarn test or
npm test script.

In the terminal, let's execute our tests:

yarn test

Executing tests

221

From this output, we can see the two tests with one passing test (with a
green checkmark) and one failing test (with the red x and a description of the
failure).

Let's update the second test to make it pass by changing the expectation to
toBeFalsy() :

describe("Timeline", () => {

 it("passing test", () => {

 expect(true).toBeTruthy();

 });

 it("failing test", () => {

 expect(false).toBeFalsy();

 });

});

Re-running the test, we can see we have two passing tests

yarn test

222

Jest provides a few global commands in our tests by default (i.e. things you
don't need to require). One of those is the expect() command. The expect()
command has a few expectations which we can call on it, including the two
we've used already:

toBeTruthy()

toBeFalsy()

toBe()

toEqual()

toBeDefined()

toBeCalled()

etc.

The entire suite of expectations is available on the jest documentation page
at: https://facebook.github.io/jest/docs/api.html#writing-assertions-with-
expect (https://facebook.github.io/jest/docs/api.html#writing-assertions-
with-expect).

Expectations

223

https://facebook.github.io/jest/docs/api.html#writing-assertions-with-expect

The expect() function takes a single argument: the value or function that
returns a value to be tested. For instance, our two tests we've already writen
pass the boolean values of true and false .

Now that we've written our first tests and confirmed our setup, we'll actually
get down to testing our Timeline component tomorrow. Great job today and
see you tomorrow!

224

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-24/post.md)

Testing the App

Let's start by looking at one feature of our application and
thinking about where the edge cases are and what we assume
will happen with the component.

Let's start with the Timeline component as it's the most complex in our
current app.

The Timeline component dispays a list of statuses with a header with a
dynamic title. We'll want to test any dynamic logic we have in our
components. The simplest bit of logic we have to start out with our tests are
around the dynamic title presented on the timeline.

An hour ago

Ate lunch

10 am

Read Day two article

10 am

Lorem Ipsum is simply dummy text of the printing and
typesetting industry.

2:21 pm

Timeline

225

https://github.com/fullstackreact/30-days-of-react/blob/master/day-24/post.md

We like to start out testing by listing our assumptions about a component
and under what circumstances these assumptions are true. For instance, a
list of assumptions we can make about our Timeline component might
include the following:

Under all circumstances, the Timeline will be contained within a <div
/> with the class of .notificationsFrame
Under all circumstances, we can assume there will be a title
Under all circumstances, we assume the search button will start out as
hidden
There is a list of at least four status updates

These assumptions will translate into our tests.

Let's open the file src/components/Timeline/__tests__/Timeline-test.js . We
left off with some dummy tests in this file, so let's clear those off and start
with a fresh describe block:

describe("Timeline", () => {

 // Tests go here

});

Testing

Lorem Ipsum has been the industry's standard dummy
text ever since the 1500s, when an unknown printer
took a galley of type and scrambled it to make a type
specimen book.

226

For every test that we write against React, we'll want to import react into our
test file. We'll also want to bring in the react test utilities:

import React from "react";

import TestUtils from "react-dom/test-utils";

describe("Timeline", () => {

 // Tests go here

});

Since we're testing the Timeline component here, we'll also want to bring
that into our workspace:

import React from "react";

import TestUtils from "react-dom/test-utils";

import Timeline from "../Timeline";

describe("Timeline", () => {

 // Tests go here

});

Let's write our first test. Our first assumption is pretty simple to test. We're
testing to make sure the element is wrapped in a .notificationsFrame class.
With every test we'll write, we'll need to render our application into the
working test document. The react-dom/test-utils library provides a
function to do just this called renderIntoDocument() :

227

import React from "react";

import TestUtils from "react-dom/test-utils";

import Timeline from "../Timeline";

describe("Timeline", () => {

 it("wraps content in a div with .notificationsFrame class", () => {

 const wrapper = TestUtils.renderIntoDocument(<Timeline />);

 });

});

If we run this test (even though we're not setting any expectations yet), we'll
see that we have a problem with the testing code. React thinks we're trying to
render an undefined component:

Let's find the element we expect to be in the DOM using another TestUtils
function called findRenderedDOMComponentWithClass() .

The findRenderedDOMComponentWithClass() function accepts two arguments.
The first is the render tree (our wrapper object) and the second is the CSS
class name we want it to look for:

import React from "react";

import TestUtils from "react-dom/test-utils";

import Timeline from "../Timeline";

describe("Timeline", () => {

 it("wraps content in a div with .notificationsFrame class", () => {

 const wrapper = TestUtils.renderIntoDocument(<Timeline />);

 const node = TestUtils.findRenderedDOMComponentWithClass(

 wrapper,

 "notificationsFrame"

);

 });

});

228

With that, our tests will pass (believe it or not). The TestUtils sets up an
expectation that it can find the component with the .notificationsFrame
class. If it doesn't find one, it will throw an error and our tests will fail.

As a reminder, we can run our tests using either the npm test command or
the yarn test command. We'll use the yarn test command for now since
we're testing one component:

yarn test

229

With our one passing test, we've confirmed our test setup is working.

Unfortunately, the interface for TestUtils is a little complex and low-level.
The enzyme library wraps TestUtils , providing an easier and higher-level
interface for asserting against a React component under test. We'll discuss
enzyme in detail tomorrow.

Great job today and see you tomorrow!

230

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-25/post.md)

Better Testing with Enzyme

Today, we'll look at an open-source library maintained by Airbnb
called Enzyme that makes testing fun and easy.

Yesterday we used the react-dom/test-utils library to write our first test
against the Timeline component. However, this library is fairly low-level and
can be a bit cumbersome to use. Enzyme (http://airbnb.io/enzyme/) is a
testing utility library released and maintained by the AirBnb (http://airbnb.io)
team and it offers a nicer, higher-level API for dealing with React components
under test.

We're testing against our <Timeline /> component:

Tue Apr 04 2017 17:00:51 GMT-0700 (MST)

Ate lunch
Nate 1

Tue Apr 04 2017 17:00:51 GMT-0700 (MST)

Played tennis
Ari 1

Tue Apr 04 2017 17:00:51 GMT-0700 (MST)

Walked the dog
Nate 0

Tue Apr 04 2017 17:00:51 GMT-0700 (MST)

Called mom
Ari 2

Timeline

231

https://github.com/fullstackreact/30-days-of-react/blob/master/day-25/post.md
http://airbnb.io/enzyme/
http://airbnb.io/

We'll use Enzyme to make these tests easier to write and more readable.

Yesterday, we wrote our first test as the following:

import React from "react";

import TestUtils from "react-dom/test-utils";

import Timeline from "../Timeline";

describe("Timeline", () => {

 it("wraps content in a div with .notificationsFrame class", () => {

 const wrapper = TestUtils.renderIntoDocument(<Timeline />);

 TestUtils.findRenderedDOMComponentWithClass(wrapper,

"notificationsFrame");

 });

});

Although this works, it's not quite the easiest test in the world to read. Let's
see what this test looks like when we rewrite it with Enzyme.

Rather than testing the complete component tree with Enzyme, we can test
just the output of the component. Any of the component's children will not
be rendered. This is called shallow rendering.

Enzyme makes shallow rendering super easy. We'll use the shallow function
exported by Enzyme to mount our component.

Using Enzyme

232

Let's first configure enzyme use the adapter that makes it compatible with
React version 16. Create src/setupTests.js and add the following:

import { configure } from "enzyme";

import Adapter from "enzyme-adapter-react-16";

configure({ adapter: new Adapter() });

Let's update the src/components/Timeline/__tests__/Timeline-test.js file to
include the shallow function from enzyme :

import React from "react";

import { shallow } from "enzyme";

describe("Timeline", () => {

 it("wraps content in a div with .notificationsFrame class", () => {

 // our tests

 });

});

Shallow rendering is supported by react-dom/test-utils as
well. In fact, Enzyme just wraps this functionality. While we
didn't use shallow rendering yesterday, if we were to use it
would look like this:

const renderer = ReactTestUtils.createRenderer();

renderer.render(<Timeline />);

const result = renderer.getRenderOutput();

Now to render our component, we can use the shallow method and store
the result in a variable. Then, we'll query the rendered component for
different React elements (HTML or child components) that are rendered
inside its virtual dom.

233

The entire assertion comprises two lines:

import React from "react";

import { shallow, mount } from "enzyme";

import Timeline from "../Timeline";

describe("Timeline", () => {

 let wrapper;

 it("wraps content in a div with .notificationsFrame class", () => {

 wrapper = shallow(<Timeline />);

 expect(wrapper.find(".notificationsFrame").length).toEqual(1);

 });

});

We can run our tests in the same manner as we did before using the yarn
test command (or the npm test command):

yarn test

Our test passes and is more readable and maintainable.
234

Let's continue writing assertions, pulling from the list of assumptions that we
made at the beginning of yesterday. We'll structure the rest of our test suite
first by writing out our describe and it blocks. We'll fill out the specs with
assertions after:

import React from "react";

import { shallow } from "enzyme";

import Timeline from "../Timeline";

describe("Timeline", () => {

 let wrapper;

 it("wraps content in a div with .notificationsFrame class", () => {

 wrapper = shallow(<Timeline />);

 expect(wrapper.find(".notificationsFrame").length).toEqual(1);

 });

 it("has a title of Timeline");

 describe("search button", () => {

 it("starts out hidden");

 it("becomes visible after being clicked on");

 });

 describe("status updates", () => {

 it("has 4 status updates at minimum");

 });

});

If we were following Test Driven Development (or TDD for
short), we would write these assumptions first and then build
the component to pass these tests.

Let's fill in these tests so that they pass against our existing Timeline
component.

235

Our title test is relatively simple. We'll look for the title element and confirm
the title is Timeline .

We expect the title to be available under a class of .title . So, to use the
.title class in a spec, we can just grab the component using the find
function exposed by Enzyme.

Since our Header component is a child component of our Timeline
component, we can't use the shallow() method. Instead we have to use the
mount() method provided by Enzyme.

The shallow() rendering function only renders the component we're
testing specifically and it won't render child elements. Instead we'll have
to mount() the component as the child Header won't be available in the
jsdom otherwise.

We'll look at more Enzyme functions at the end of this article.

Let's fill out the title spec now:

Shallow? Mount?

236

import React from "react";

import { shallow, mount } from "enzyme";

import Timeline from "../Timeline";

describe("Timeline", () => {

 let wrapper;

 it("wraps content in a div with .notificationsFrame class", () => {

 wrapper = shallow(<Timeline />);

 expect(wrapper.find(".notificationsFrame").length).toEqual(1);

 });

 it("has a title of Timeline", () => {

 wrapper = mount(<Timeline />); // notice the `mount`

 expect(wrapper.find(".title").text()).toBe("Timeline");

 });

});

Running our tests, we'll see these two expectations pass:

Next, let's update our search button tests. We have two tests here, where one
requires us to test an interaction. Enzyme provides a very clean interface for
handling interactions. Let's see how we can write a test against the search

237

icon.

Again, since we're testing against a child element in our Timeline, we'll have
to mount() the element. Since we're going to write two tests in a nested
describe() block, we can write a before helper to create the mount() anew
for each test so they are pure.

In addition, we're going to use the input.searchInput element for both tests,
so let's write the .find() for that element in the before helper too.

describe("Timeline", () => {

 let wrapper;

 // ...

 describe("search button", () => {

 beforeEach(() => (wrapper = mount(<Timeline />)));

 // ...

 });

});

To test if the search input is hidden, we'll just have to know if the active
class is applied or not. Enzyme provides a way for us to detect if a component
has a class or not using the hasClass() method. Let's fill out the first test to
expect the search input doens't have the active class:

238

describe("Timeline", () => {

 let wrapper;

 // ...

 describe("search button", () => {

 beforeEach(() => (wrapper = mount(<Timeline />)));

 it("starts out hidden", () => {

expect(wrapper.find("input.searchInput").hasClass("active")).toBeFalsy

();

 });

 it("becomes visible after being clicked on");

 // ...

 });

});

The tricky part about the second test is that we need to click on the icon
element. Before we look at how to do that, let's find it first. We can target it
by it's .searchIcon class on the wrapper:

it("becomes visible after being clicked on", () => {

 const icon = wrapper.find(".searchIcon");

});

Now that we have the icon we want to simulate a click on the element. Recall
that the onClick() method is really just a facade for browser events. That is,
a click on an element is just an event getting bubbled through the
component. Rather than controlling a mouse or calling click on the
element, we'll simulate an event occurring on it. For us, this will be the click
event.

We'll use the simulate() method on the icon to create this event:

it("becomes visible after being clicked on", () => {

 const icon = wrapper.find(".searchIcon");

 icon.simulate("click");

});

239

Now we can set an expectation that the search component has the active
class.

it("becomes visible after being clicked on", () => {

 const icon = wrapper.find(".searchIcon");

 icon.simulate("click");

expect(wrapper.find("input.searchInput").hasClass("active")).toBeTruth

y();

});

Our last expectation for the Timeline component is that we have at least
four status updates. As we are laying these elements on the Timeline
component, we can shallow render the component. In addition, since each
of the elements are of a custom component, we can search for the list of
specific components of type 'ActivityItem'.

describe("status updates", () => {

 it("has 4 status updates at minimum", () => {

 wrapper = shallow(<Timeline />);

 // ...

 });

});

Now we can test for the length of a list of ActivityItem components. We'll
set our expectation that the list if at least of length 4.

describe("status updates", () => {

 it("has 4 status updates at minimum", () => {

 wrapper = shallow(<Timeline />);

 expect(wrapper.find("ActivityItem").length).toBeGreaterThan(3);

 });

});

The entire test suite that we have now is the following:

240

import React from "react";

import { shallow, mount } from "enzyme";

import Timeline from "../Timeline";

describe("Timeline", () => {

 let wrapper;

 it("wraps content in a div with .notificationsFrame class", () => {

 wrapper = shallow(<Timeline />);

 expect(wrapper.find(".notificationsFrame").length).toEqual(1);

 });

 it("has a title of Timeline", () => {

 wrapper = mount(<Timeline />);

 expect(wrapper.find(".title").text()).toBe("Timeline");

 });

 describe("search button", () => {

 beforeEach(() => (wrapper = mount(<Timeline />)));

 it("starts out hidden", () => {

expect(wrapper.find("input.searchInput").hasClass("active")).toBeFalsy

();

 });

 it("becomes visible after being clicked on", () => {

 const icon = wrapper.find(".searchIcon");

 icon.simulate("click");

expect(wrapper.find("input.searchInput").hasClass("active")).toBeTruth

y();

 });

 });

 describe("status updates", () => {

 it("has 4 status updates at minimum", () => {

 wrapper = shallow(<Timeline />);

 expect(wrapper.find("ActivityItem").length).toBeGreaterThan(3);

 });

 });

});

What's the deal with find()?
241

Before we close out for today, we should look at the interface of an Enzyme
shallow-rendered component (in our tests, the wrapper object). The Enzyme
documentation (http://airbnb.io/enzyme/docs/api/shallow.html) is
fantastic, so we'll keep this short.

Basically, when we use the find() function, we'll pass it a selector and it will
return a ShallowWrapper instance that wraps the found nodes. The find()
function can take a string, function, or an object.

When we pass strings into the find() function, we can pass CSS selectors or
the displayName of a component. For instance:

wrapper.find("div.link");

wrapper.find("Link");

We can also pass it the component constructor, for instance:

import { Link } from "react-router";

// ...

wrapper.find(Link);

Finally, we can also pass it an object property selector object, which selects
elements by their key and values. For instance:

wrapper.find({ to: "/login" });

The return value is a ShallowWrapper , which is a type of Wrapper (we can
have rendered wrappers and shallow wrappers). These Wrapper instances
have a bunch of functions we can use to target different child components,
ways to look into the props and the state , as well as other attributes of a
rendered component, such as html() and text() . What's more, we can
chain these calls together.

What's the deal with find()?

242

http://airbnb.io/enzyme/docs/api/shallow.html

Take the case of the <Link /> component. If we wanted to find the HTML of
the link class based on all the links available, we can write a test like this:

// ...

it("displays a link tag with the Login text", () => {

 link = wrapper.find("Link").find({ to: "/login" });

 expect(link.html()).toBe('Login');

});

Phew! That's a lot of new information today, but look how quickly we wrote
our follow-up tests with Enzyme. It's much quicker to read and makes it
easier to discern what's actually happening.

Tomorrow we'll continue with our testing journey and walk through
integration testing our application.

243

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-26/post.md)

Integration Testing

Today we'll write tests to simulate how users interact with our
application and will test the entire flow of our app in a live
browser.

We've reached the final part of our introduction to testing. We're going to
wrap up our testing section with integration testing. As a reminder of what
Integration testing is, it's the process of automating the experience that our
actual users experience as they use our application.

As we're integration testing, we'll need to have our app actually running as
we're going to have a browser launch and execute our application. We'll be
using an automation server called selenium (http://www.seleniumhq.org), so

Logo (/) Login please (/login) About (/about)

You need to know the secret

Integration testing

244

https://github.com/fullstackreact/30-days-of-react/blob/master/day-26/post.md
http://www.seleniumhq.org/
http://localhost:3020/
http://localhost:3020/login
http://localhost:3020/about

we'll need to download it as well as a really nifty node automated testing
framework called Nightwatch (http://nightwatchjs.org).

The easiest way to install selenium (http://docs.seleniumhq.org/download/)
is to download it through the the selenium website at:
http://docs.seleniumhq.org/download/
(http://docs.seleniumhq.org/download/).

If you're on a mac, you can use Homebrew (http://brew.sh)
with the brew command:

brew install selenium-server-standalone

We'll also need to install the nightwatch command, which we can do with the
npm package manager. Let's install nightwatch globally using the --global
flag:

npm install --global nightwatch

This command gives us the nightwatch command available anywhere in our
terminal. We'll need to add a configuration file in the root directory called
nighwatch.json (or nighwatch.conf.js). We'll use the default configuration
file at nighwatch.json

Let's create the file in our root directory:

touch nightwatch.json

Now add the following content in the new nightwatch.json :

Install

245

http://nightwatchjs.org/
http://docs.seleniumhq.org/download/
http://docs.seleniumhq.org/download/
http://brew.sh/

{

 "src_folders" : ["tests"],

 "output_folder" : "reports",

 "selenium" : {

 "start_process" : false,

 "server_path" : "",

 "log_path" : "",

 "host" : "127.0.0.1",

 "port" : 4444,

 "cli_args" : {

 "webdriver.chrome.driver" : "",

 "webdriver.ie.driver" : ""

 }

 },

 "test_settings" : {

 "default" : {

 "launch_url" : "http://localhost:3000",

 "selenium_port" : 4444,

 "selenium_host" : "localhost",

 "silent": true,

 "screenshots" : {

 "enabled" : false,

 "path" : ""

 },

 "desiredCapabilities": {

 "browserName": "chrome",

 "javascriptEnabled": true,

 "acceptSslCerts": true

 }

 },

 "chrome" : {

 "desiredCapabilities": {

 "browserName": "chrome",

 "javascriptEnabled": true,

 "acceptSslCerts": true

 }

 }

 }

}

246

Nightwatch gives us a lot of configuration options available, so we won't
cover all the possible ways to configure it. For our purposes, we'll just use the
base configuration above as it's more than enough for getting integration
testing going.

We'll write our nightwatch tests in a tests/ directory. Let's start by writing a
test for handling the auth workflow. Let's write our test in a tests/ directory
(which matches the src_folders) that we'll call tests/auth-flow.js .

mkdir tests

touch tests/auth-flow.js

The nightwatch tests can be set as an object of exports, where the key is the
description of the test and the value is a function with a reference to the
client browser. For instance, we'll set up four tests for our tests/auth-
flow.js test.

Updating our tests/auth-flow.js file with these four test functions look like
the following:

module.exports = {

 "get to login page": browser => {},

 "logging in": browser => {},

 "logging out": browser => {},

 close: browser => {}

};

Each of the functions in our object exports will receive a browser instance
which serves as the interface between our test and the selenium webdriver.
We have all sorts of available options we can run on this browser variable.

Let's write our first test to demonstrate this function. We're going to set up
nightwatch so that it launches the page, and clicks on the Login link in the
navbar. We'll take the following steps to do this:

Writing tests

247

1. We'll first call the url() function on browser to ask it to load a URL on
the page.

2. We'll wait for the page to load for a certain amount of time.
3. We'll find the Login link and click on it.

And we'll set up assertions along the way. Let's get busy! We'll ask the
browser to load the URL we set in our configuration file (for us, it's
http://localhost:3000)

module.exports = {

 "get to login page": browser => {

 browser

 // Load the page at the launch URL

 .url(browser.launchUrl)

 // wait for page to load

 .waitForElementVisible(".navbar", 1000)

 // click on the login link

 .click('a[href="/login"]');

 browser.assert.urlContains("login");

 },

 "logging in": browser => {},

 "logging out": browser => {},

 close: browser => {}

};

Thats it. Before we get too far ahead, let's run this test to make sure our test
setup works. We'll need to open 3 terminal windows here.

In the first terminal window, let's launch selenium. If you downloaded the
.jar file, you can start this with the command:

java -jar selenium-server-standalone-{VERSION}.jar

If you downloaded it through homebrew, you can use the selenium-server
command:

248

selenium-server

In the second window, we'll need to launch our app. Remember, the browser
we're going to launch will actually hit our site, so we need an instance of it
running. We can start our app up with the npm start comamnd:

npm start

249

Finally, in the third and final terminal window, we'll run our tests using the
nightwatch command.

nightwatch

250

When we run the nightwatch command, we'll see a chrome window open up,
visit the site, and click on the login link automatically... (pretty cool, right?).

All of our tests pass at this point. Let's actually tell the browser to log a user
in.

Since the first step will run, the browser will already be on the login page. In
the second key of our tests, we'll want to take the following steps:

1. We'll want to find the input for he user's email and set a value to a
valid email.

2. We'll want to click the submit/login button
3. We'll wait for the page to load (similar to how we did previously)
4. We'll want to assert that the text of the page is equal to what we expect

it to be.
5. We'll set an assertion to make sure the URL is what we think it is.

Writing this up in code is straight-forward too. Just like we did previously,
let's write the code with comments inline:

251

module.exports = {

 "get to login page": browser => {

 browser

 // Load the page at the launch URL

 .url(browser.launchUrl)

 // wait for page to load

 .waitForElementVisible(".navbar", 1000)

 // click on the login link

 .click('a[href="/login"]');

 browser.assert.urlContains("login");

 },

 "logging in": browser => {

 browser

 // set the input email to a valid username / password

 .setValue("input[type=text]", "admin")

 .setValue("input[type=password]", "secret")

 // submit the form

 .click("input[type=submit]")

 // wait for the page to load

 .waitForElementVisible(".navbar", 1000)

 // Get the text of the h1 tag

 .getText(".home h1", function(comp) {

 this.assert.equal(comp.value, "Welcome home!");

 });

 browser.assert.urlContains(browser.launchUrl);

 },

 "logging out": browser => {},

 close: browser => {}

};

Running these tests again (in the third terminal window):

nightwatch

252

We can do a similar thing with the logging out step from our browser. To
get a user to log out, we will:

1. Find and click on the logout link
2. We'll want to `wait for the content to load again
3. We'll assert that t`he h1 tag contains the value we expect it to have
4. And we'll make sure the page shows the Login button

Let's implement this with comments inline:

253

module.exports = {

 "get to login page": browser => {

 browser

 // Load the page at the launch URL

 .url(browser.launchUrl)

 // wait for page to load

 .waitForElementVisible(".navbar", 1000)

 // click on the login link

 .click('a[href="/login"]');

 browser.assert.urlContains("login");

 },

 "logging in": browser => {

 browser

 // set the input email to a valid username / password

 .setValue("input[type=text]", "admin")

 .setValue("input[type=password]", "secret")

 // submit the form

 .click("input[type=submit]")

 // wait for the page to load

 .waitForElementVisible(".navbar", 1000)

 // Get the text of the h1 tag

 .getText(".home h1", function(comp) {

 this.assert.equal(comp.value, "Welcome home!");

 });

 browser.assert.urlContains(browser.launchUrl);

 },

 "logging out": browser => {

 browser

 // Find and click on the logout link

 .click(".logout")

 // We'll wait for the next content to load

 .waitForElementVisible("h1", 1000)

 // Get the text of the h1 tag

 .getText("h1", function(res) {

 this.assert.equal(res.value, "You need to know the secret");

 })

 // Make sure the Login button shows now

 .waitForElementVisible('a[href="/login"]', 1000);

 },

254

 close: browser => {}

};

As of now, you may have noticed that your chrome browsers haven't been
closing when the tests have completed. This is because we haven't told
selenium that we want the session to be complete. We can use the end()
command on the browser object to close the connection. This is why we
have the last and final step called close .

{

 // ...

 'close': (browser) => browser.end()

}

Now let's run the entire suite and make sure it passes again using the
nightwatch command:

nightwatch

255

One final note, if you're interested in a deeper set of selenium tutorials,
check out the free tutorials from guru99.com at
https://www.guru99.com/selenium-tutorial.html
(https://www.guru99.com/selenium-tutorial.html). They are pretty in-depth
and well done (in our opinion).

That's it! We've made it and have covered 3 types of testing entirely, from
low-level up through faking a real browser instance. Now we have the tools
to ensure our applications are ready for full deployment.

But wait, we don't actually have deployment figured out yet, do we? Stay
tuned for tomorrow when we start getting our application deployed into the
cloud.

256

https://www.guru99.com/selenium-tutorial.html

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-27/post.md)

Deployment Introduction

Today, we'll explore the different pieces involved in deploying
our application so the world can use our application out in the
wild.

With our app all tested up through this point, it's time to get it up and live for
the world to see. The rest of this course will be dedicated to deploying our
application into production.

When talking about deployment, we have a lot of different options:

Hosting
Deployment environment configuration
Continuous Integration (CI, for short)
Cost cycles, network bandwidth cost
Bundle size
and more

We'll look at the different hosting options we have for deploying our react
app tomorrow and look at a few different methods we have for deploying our
application up. Today we're going to focus on getting our app ready for
deployment.

Production deployment

Ejection (from create-react-app)
257

https://github.com/fullstackreact/30-days-of-react/blob/master/day-27/post.md

First things first... we're going to need to handle some customization in our
web application, so we'll need to run the npm run eject command in the root
of our directory. This is a permanent action, which just means we'll be
responsible for handling customizations to our app structure for now on
(without the help of our handy create-react-app).

This is where I always say make a backup copy of your
application. We cannot go back from ejecting , but we can
revert to old code.

We can eject from the create-react-app structure by running the eject
command provided by the generator:

npm run eject

After ejecting from the create-react-app structure, we'll see we get a lot of
new files in our application root in the config/ and scripts/ directories.
The npm run eject command created all of the files it uses internally and
wrote them all out for us in our application.

The key method of the create-react-app generator is called webpack
(https://webpack.github.io), which is a module bundler/builder.

Webpack is a module bundler with a ginormous community of users, tons of
plugins, is under active development, has a clever plugin system, is incredibly
fast, supports hot-code reloading, and much much more.

Ejection (from create-react-app)

Webpack basics

258

https://webpack.github.io/

Although we didn't really call it out before, we've been using webpack this
entire time (under the guise of npm start). Without webpack, we wouldn't
have have been able to just write import and expect our code to load. It
works like that because webpack "sees" the import keyword and knows we
need to have the code at the path accessible when the app is running.

Webpack takes care of hot-reloading for us, nearly automatically, can load
and pack many types of files into bundles, and it can split code in a logical
manner so as to support lazy-loading and shrink the initial download size for
the user.

This is meaningful for us as our apps grow larger and more complex, it's
important to know how to manipulate our build tools.

For example, when we want to deploy to different environments... which we'll
get to shortly. First, a tiny introduction to webpack, what it is and how it
works.

Looking into the generated files when we ran npm start before we ejected
the app, we can see that it serves the browser two or more files. The first is
the index.html and the bundle.js . The webpack server takes care of
injecting the bundle.js into the index.html , even if we don't load our app in
the index.html file.

The bundle.js file is a giant file that contains all the JavaScript code our app
needs to run, including dependencies and our own files alike. Webpack has
it's own method of packing files together, so it'll look kinda funny when
looking at the raw source.

Webpack has performed some transformation on all the included JavaScript.
Notably, it used Babel to transpile our ES6 code to an ES5-compatible format.

If you look at the comment header for app.js , it has a number, 254 :

What it does with bundle.js

259

/* 254 */

/*!********************!*\

 !*** ./src/app.js ***!

 ********************/

The module itself is encapsulated inside of a function that looks like this:

function(module, exports, __webpack_require__) {

 // The chaotic `app.js` code here

}

Each module of our web app is encapsulated inside of a function with this
signature. Webpack has given each of our app's modules this function
container as well as a module ID (in the case of app.js , 254).

But "module" here is not limited to ES6 modules.

Remember how we "imported" the makeRoutes() function in app.js , like this:

import makeRoutes from './routes'

Here's what the variable declaration of makeRoutes looks like inside the chaos
of the app.js Webpack module:

var _logo = __webpack_require__(/*! ./src/routes.js */ 255);

This looks quite strange, mostly due to the in-line comment that Webpack
provides for debugging purposes. Removing that comment:

var _logo = __webpack_require__(255);

Instead of an import statement, we have plain old ES5 code.

260

Now, search for ./src/routes.js in this file.

/* 255 */

/*!**********************!*\

 !*** ./src/routes.js ***!

 **********************/

Note that its module ID is 255 , the same integer passed to
__webpack_require__ above.

Webpack treats everything as a module, including image assets like logo.svg .
We can get an idea of what's going on by picking out a path in the mess of the
logo.svg module. Your path might be different, but it will look like this:

static/media/logo.5d5d9eef.svg

If you open a new browser tab and plug in this address (your address will be
different... matching the name of the file webpack generated for you):

http://localhost:3000/static/media/logo.5d5d9eef.svg

You should get the React logo:

So Webpack created a Webpack module for logo.svg , one that refers to the
path to the SVG on the Webpack development server. Because of this
modular paradigm, it was able to intelligently compile a statement like this:

import makeRoutes from './routes'

Into this ES5 statement:

var _makeRoutes = __webpack_require__(255);

What about our CSS assets? Yep, everything is a module in Webpack. Search
for the string ./src/app.css :

261

Webpack's index.html didn't include any references to CSS. That's because
Webpack is including our CSS here via bundle.js . When our app loads, this
cryptic Webpack module function dumps the contents of app.css into style
tags on the page.

So we know what is happening: Webpack has rolled up every conceivable
"module" for our app into bundle.js . You might be asking: Why?

The first motivation is universal to JavaScript bundlers. Webpack has
converted all our ES6 modules into its own bespoke ES5-compatible module
syntax. As we briefly touched on, it's wrapped all of our JavaScript modules in
special functions. It provides a module ID system to enable one module to
reference another.

Webpack, like other bundlers, consolidated all our JavaScript modules into a
single file. It could keep JavaScript modules in separate files, but this requires
some more configuration than create-react-app provides out of the box.

Webpack takes this module paradigm further than other bundlers, however.
As we saw, it applies the same modular treatment to image assets, CSS, and
npm packages (like React and ReactDOM). This modular paradigm unleashes
a lot of power. We touch on aspects of that power throughout the rest of this
chapter.

It's okay if you don't understand that out of the box. Building and
maintaining webpack is a complex project with lots of moving parts and it
often takes even the most experienced developers a while to "get."

We'll walk through the different parts of our webpack configuration that
we'll be working with. If it feels overwhelming, just stick with us on the
basics here and the rest will follow.

Complex, right?

262

With our newfound knowledge of the inner workings of Webpack, let's turn
our attention back to our app. We'll make some modifications to our webpack
build tool to support multiple environment configurations.

When we're ready to deploy a new application, we have to think about a few
things that we wouldn't have to focus on when developing our application.

For instance, let's say we are requesting data from an API server... when
developing this application, it's likely that we are going to be running a
development instance of the API server on our local machine (which would
be accessible through localhost).

When we deploy our application, we'll want to be requesting data from an
off-site host, most likely not in the same location from where the code is
being sent, so localhost just won't do.

One way we can handle our configuration management is by using .env files.
These .env files will contain different variables for our different
environments, yet still provide a way for us to handle configuration in a sane
way.

Usually, we'll keep one .env file in the root to contain a global config that can
be overridden by configuration files on a per-environment basis.

Let's install an npm package to help us with this configuration setup called
dotenv :

npm install --save-dev dotenv

The dotenv (https://github.com/motdotla/dotenv) library helps us load
environment variables into the ENV of our app in our environments.

Environment configuration

263

https://github.com/motdotla/dotenv

It's usually a good idea to add .env to our .gitignore file, so
we don't check in these settings.

Conventionally, it's a good idea to create an example version of the .env
file and check that into the repository. For instance, for our application
we can create a copy of the .env file called .env.example with the
required variables.

Later, another developer (or us, months from now) can use the
.env.example file as a template for what the .env file should look like.

These .env files can include variables as though they are unix-style
variables. Let's create our global one with the APP_NAME set to 30days:

touch .env

echo "APP_NAME=30days" > .env

Let's navigate to the exploded config/ directory where we'll see all of our
build tool written out for us. We won't look at all of these files, but to get an
understanding of what are doing, we'll start looking in
config/webpack.config.dev.js .

This file shows all of the webpack configuration used to build our app. It
includes loaders, plugins, entry points, etc. For our current task, the line to
look for is in the plugins list where we define the DefinePlugin() :

264

module.exports = {

 // ...

 plugins: [

 // ...

 // Makes some environment variables available to the JS code, for

example:

 // if (process.env.NODE_ENV === 'production') { ... }. See

`./env.js`.

 // It is absolutely essential that NODE_ENV is set to production

 // during a production build.

 // Otherwise React will be compiled in the very slow development

mode.

 new webpack.DefinePlugin(env.stringified),

 // ...

]

}

The webpack.DefinePlugin plugin takes an object with keys and values and
finds all the places in our code where we use the key and it replaces it with
the value.

For instance, if the env object there looks like:

{

 '__NODE_ENV__': 'development'

}

We can use the variable __NODE_ENV__ in our source and it will be replaced
with 'development', i.e.:

class SomeComponent extends React.Component {

 render() {

 return (

 <div>Hello from {__NODE_ENV__}</div>

)

 }

}

265

The result of the render() function would say "Hello from development".

To add our own variables to our app, we're going to use this env object and
add our own definitions to it. Scrolling back up to the top of the file, we'll see
that it's currently created and exported from the config/env.js file.

Looking at the config/env.js file, we can see that it takes all the variables in
our environment and adds the NODE_ENV to the environment as well as any
variables prefixed by REACT_APP_ .

266

// ...

// Grab NODE_ENV and REACT_APP_* environment variables and prepare

them to be

// injected into the application via DefinePlugin in Webpack

configuration.

const REACT_APP = /^REACT_APP_/i;

// ...

function getClientEnvironment(publicUrl) {

 const raw = Object.keys(process.env)

 .filter(key => REACT_APP.test(key))

 .reduce(

 (env, key) => {

 env[key] = process.env[key];

 return env;

 },

 {

 // Useful for determining whether we’re running in production

mode.

 // Most importantly, it switches React into the correct mode.

 NODE_ENV: process.env.NODE_ENV || "development",

 // Useful for resolving the correct path to static assets in

`public`.

 // For example, <img src={process.env.PUBLIC_URL +

'/img/logo.png'} />.

 // This should only be used as an escape hatch. Normally you

would put

 // images into the `src` and `import` them in code to get

their paths.

 PUBLIC_URL: publicUrl,

 }

);

 // Stringify all values so we can feed into Webpack DefinePlugin

 const stringified = {

 "process.env": Object.keys(raw).reduce((env, key) => {

 env[key] = JSON.stringify(raw[key]);

 return env;

 }, {})

 };

 return { raw, stringified };

}

267

module.exports = getClientEnvironment;

We can skip all the complex part of that operation as we'll only need to
modify the second argument to the reduce function, in other words, we'll
update the object:

 {

 // Useful for determining whether we’re running in production mode.

 // Most importantly, it switches React into the correct mode.

 NODE_ENV: process.env.NODE_ENV || "development",

 // Useful for resolving the correct path to static assets in

`public`.

 // For example, <img src={process.env.PUBLIC_URL + '/img/logo.png'}

/>.

 // This should only be used as an escape hatch. Normally you would

put

 // images into the `src` and `import` them in code to get their

paths.

 PUBLIC_URL: publicUrl,

}

This object is the initial object of the reduce function. The
reduce function merges all of the variables prefixed by
REACT_APP_ into this object, so we'll always have the
process.env.NODE_ENV replaced in our source.

Essentially what we'll do is:

1. Load our default .env file
2. Load any environment .env file
3. Merge these two variables together as well as any default variables (such

as the NODE_ENV)
4. We'll create a new object with all of our environment variables and

sanitize each value.

268

5. Update the initial object for the existing environment creator.

Let's get busy. In order to load the .env file, we'll need to import the dotenv
package. We'll also import the path library from the standard node library
and set up a few variables for paths.

Let's update the config/env.js file

var REACT_APP = /^REACT_APP_/i;

var NODE_ENV = process.env.NODE_ENV || 'development';

const path = require('path'),

 resolve = path.resolve,

 join = path.join;

const currentDir = resolve(__dirname);

const rootDir = join(currentDir, '..');

const dotenv = require('dotenv');

To load the global environment, we'll use the config() function exposed by
the dotenv library and pass it the path of the .env file loaded in the root
directory. We'll also use the same function to look for a file in the config/
directory with the name of NODE_ENV.config.env . Additionally, we don't want
either one of these methods to error out, so we'll add the additional option of
silent: true so that if the file is not found, no exception will be thrown.

// 1. Step one (loading the default .env file)

const globalDotEnv = dotenv.config({

 path: join(rootDir, '.env'),

 silent: true

});

// 2. Load the environment config

const envDotEnv = dotenv.config({

 path: join(currentDir, NODE_ENV + `.config.env`),

 silent: true

});

269

Next, let's concatenate all these variables together as well as include our
NODE_ENV option in this object. The Object.assign() method creates a new
object and merges each object from right to left. This way, the environment
config variable

const allVars = Object.assign(

 {},

 {

 NODE_ENV: NODE_ENV

 },

 globalDotEnv.parsed,

 envDotEnv.parsed

);

With our current setup, the allVars variable will look like:

{

 'NODE_ENV': 'development',

 'APP_NAME': '30days'

}

Now we can add this allVars as an argument to the reduce function initial
value called in the raw variable in the getClientEnvironment function. Let's
update it to use this object:

270

function getClientEnvironment(publicUrl) {

 // ...

 const raw = Object.keys(process.env)

 .filter(key => REACT_APP.test(key))

 .reduce(

 (env, key) => {

 env[key] = process.env[key];

 return env;

 },

 {

 // Useful for determining whether we’re running in production

mode.

 // Most importantly, it switches React into the correct mode.

 NODE_ENV: process.env.NODE_ENV || "development",

 // Useful for resolving the correct path to static assets in

`public`.

 // For example, <img src={process.env.PUBLIC_URL +

'/img/logo.png'} />.

 // This should only be used as an escape hatch. Normally you

would put

 // images into the `src` and `import` them in code to get

their paths.

 PUBLIC_URL: publicUrl,

 ...allVars

 }

);

 // ...

}

Now, anywhere in our code we can use the variables we set in our .env files.

Since we are making a request to an off-site server in our app, let's use our
new configuration options to update this host.

Let's say by default we want the TIME_SERVER to be set to
http://localhost:3001 , so that if we don't set the TIME_SERVER in an
environment configuration, it will default to localhost. We can do this by
adding the TIME_SERVER variable to the global .env file.

Let's update the .env file so that it includes this time server:
271

APP_NAME=30days

TIME_SERVER='http://localhost:3001'

Now, we've been developing in "development" with the server hosted on
heroku. We can set our config/development.config.env file to set the
TIME_SERVER variable, which will override the global one:

TIME_SERVER='https://fullstacktime.herokuapp.com'

Now, when we run npm start , any occurrences of process.env.TIME_SERVER
will be replaced by which ever value takes precedence.

Let's update our src/redux/actionCreators.js module to use the new server,
rather than the hardcoded one we used previously.

// ...

const host = process.env.TIME_SERVER;

export const fetchNewTime = (timezone = "pst", str = "now") => ({

 type: types.FETCH_NEW_TIME,

 payload: new Date().toString(),

 meta: {

 type: "api",

 url: host + "/" + timezone + "/" + str + ".json"

 }

});

Now, for our production deployment, we'll use the heroku app, so let's create
a copy of the development.config.env file as production.config.env in the
config/ directory:

cp config/development.config.env config/production.config.env

Custom middleware per-
configuration environment

272

We used our custom logging redux middleware in our application. This is
fantastic for working on our site in development, but we don't really want it
to be active while in a production environment.

Let's update our middleware configuration to only use the logging
middleware when we are in development, rather than in all environments. In
our project's src/redux/configureStore.js file, we loaded our middleware by
a simple array:

let middleware = [

 loggingMiddleware,

 apiMiddleware

];

export const configureStore = () => {

 // ...

 const store = createStore(rootReducer, initialState,

applyMiddleware(...middleware));

 // ...

}

Now that we have the process.env.NODE_ENV available to us in our files, we
can update the middleware array depending upon the environment we're
running in. Let's update it to only add the logging if we are in the
development environment:

// ...

let middleware = [apiMiddleware];

if ("development" === process.env.NODE_ENV) {

 middleware.unshift(loggingMiddleware);

}

// ...

Now when we run our application in development, we'll have the
loggingMiddleware set, while in any other environment we've disabled it.

Today was a long one, but tomorrow is an exciting day as we'll get the app up
and running on a remote server.

configuration environment

273

Great work today and see you tomorrow!

274

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-28/post.md)

Deployment

Today, we'll look through some ready-to-go options so we can
get our site up and running. By the end of today, you'll be able to
share a link to your running application.

We left off yesterday preparing for our first deployment of our application.
We're ready to deploy our application. Now the question is where and what
are we going to deploy?

Let's explore...

While deploying a single page application has it's own intricasies, it's similar
to deploying a non-single page application. What the end-user's browser
requests all need to be available for the browser to request. This means all
javascript files, any custom fonts, images, svg, stylesheets, etc. that we use in
our application need to be available on a publicly available server.

Webpack takes care of building and packaging our entire application for what
we'll need to give the server to send to our clients. This includes any client-
side tokens and our production configuration (which we put together
yesterday).

What

275

https://github.com/fullstackreact/30-days-of-react/blob/master/day-28/post.md

This means we only need to send the contents of the distribution directory
webpack put together. In our case, this directory is the build/ directory. We
don't need to send anything else in our project to a remote server.

Let's use our build system to generate a list of production files we'll want to
host. We can run the npm run build command to generate these files in the
build/ directory:

npm run build

These days we have many options for hosting client-side applications. We'll
look at a few options for hosting our application today. Each of the following
hosting services have their benefits and drawbacks, which we'll briefly
discuss before we actually make a deployment.

There are two possible ways for us to deploy our application. If we are
working with a back-end application, we can use the back-end server to host
our public application files. For instance, if we were building a rails

Where

276

application, we can send the client-side application directly to the public/
folder of the rails application.

This has the benefit of providing additional security in our application as we
can verify a request from a client-side application made to the backend to
have been generated by the server-side code. One drawback, however is that
it can hog network bandwidth to send static files and potentially suck up
resources from other clients.

In this section, we'll work on hosting our client-side only application, which
is the second way we can deploy our application. This means we can run/use
a server which is specifically designed for hosting static files separate from
the back-end server.

We'll focus on the second method where we are using other services to
deploy our client-side application. That is, we'll skip building a back-end and
upload our static files to one (or more) of the (non-exhaustive) list of hosting
services.

surge.sh (https://surge.sh/)
github pages (https://pages.github.com/)
heroku (https://www.heroku.com/)
AWS S3 (https://aws.amazon.com/s3/)
Forge (https://getforge.com/)
BitBalloon (https://www.bitballoon.com/)
Pancake (https://www.pancake.io/)
... More

We'll explore a few of these options together.

surge.sh

277

https://surge.sh/
https://pages.github.com/
https://www.heroku.com/
https://aws.amazon.com/s3/
https://getforge.com/
https://www.bitballoon.com/
https://www.pancake.io/

surge.sh (https://surge.sh/) is arguably one of the easiest hosting providers
to host our static site with. They provide a way for us to easily and repeatable
methods for hosting our sites.

Let's deploy our application to surge. First, we'll need to install the surge
command-line tool. We'll use npm , like so:

npm install --global surge

With the surge tool installed, we can run surge in our local directory and
point it to the build/ directory to tell it to upload the generated files in the
build/ directory.

surge -p build

The surge tool will run and it will upload all of our files to a domain specified
by the output of the tool. In the case of the previous run, this uploads our
files to the url of hateful-impulse.surge.sh (http://hateful-impulse.surge.sh/)
(or the SSL version at https://hateful-impulse.surge.sh/ (https://hateful-
impulse.surge.sh/))

278

https://surge.sh/
http://hateful-impulse.surge.sh/
https://hateful-impulse.surge.sh/

For more information on surge , check out their documentation at
https://surge.sh/help/ (https://surge.sh/help/).

Github pages

279

https://surge.sh/help/

github pages (https://pages.github.com/) is another easy service to deploy
our static files to. It's dependent upon using github to host our git files, but is
another easy-to-use hosting environment for single page applications.

We'll need to start by creating our github pages repository on github. With an
active account, we can visit the github.com/new (https://github.com/new)
site and create a repository.

With this repo, it will redirect us to the repo url. Let's click on the clone or
download button and find the github git url. Let's copy and paste this to our
clipboard and head to our terminal.

280

https://pages.github.com/
https://github.com/new

In our terminal, let's add this as a remote origin for our git repo.

Since we haven't created this as a git repo yet, let's initialize the git repo:

git init

git add -A .

git commit -am "Initial commit"

In the root directory of our application, let's add the remote with the
following command:

git remote add github [your git url here]

From the demo, this will be:

git remote add origin git@github.com:auser/30-days-of-react-demo.git

Next, we'll need to move to a branch called gh-pages as github deploys from
this branch. We can easily do this by checking out in a new branch using git.
Let's also run the generator and tell git that the build/ directory should be
considered the root of our app:

281

npm run build

git checkout -B gh-pages

git add -f build

git commit -am "Rebuild website"

git filter-branch -f --prune-empty --subdirectory-filter build

git checkout -

Since github pages does not serve directly from the root, but instead the
build folder, we'll need to add a configuration to our package.json by setting
the homepage key to the package.json file with our github url. Let's open the
package.json file and add the "homepage" key:

{

 "name": "30days",

 "version": "0.0.1",

 "private": true,

 "homepage": "http://auser.github.io/30-days-of-react-demo

(http://auser.github.io/30-days-of-react-demo)",

 // ...

}

282

http://auser.github.io/30-days-of-react-demo

We can modify json files by using the jq (https://stedolan.github.io/jq/)
tool. If you don't have this installed, get it... get it now... It's invaluable

To change the package.json file from the command-line, we can use jq,
like so:

jq '.homepage = \

 "http://auser.github.io/30-days-of-react-demo

(http://auser.github.io/30-days-of-react-demo)"' \

 > package.json

With our pages built, we can generate our application using npm run build
and push to github from our local build/ directory.

git push -f github gh-pages

Now we can visit our site at the repo pages url. For instance, the demo site is:
https://auser.github.io/30-days-of-react-demo (https://auser.github.io/30-
days-of-react-demo/#).

Hint

283

https://stedolan.github.io/jq/
http://auser.github.io/30-days-of-react-demo
https://auser.github.io/30-days-of-react-demo/#

We'll need to add this work to a deployment script, so every time we want
to release a new version of the site. We'll do more of this tomorrow. To
release to github, we'll have to use the following script:

#!/usr/bin/env bash

git checkout -B gh-pages

git add -f build

git commit -am "Rebuild website"

git filter-branch -f --prune-empty --subdirectory-filter build

git push -f origin gh-pages

git checkout -

For more information on github pages, check out their documentation at
https://help.github.com/categories/github-pages-basics/
(https://help.github.com/categories/github-pages-basics/).

Future deployments

Heroku

284

https://help.github.com/categories/github-pages-basics/

Heroku (https://www.heroku.com/) is a very cool hosting service that allows
us to host both static and non-static websites. We might want to deploy a
static site to heroku as we may want to move to a dynamic backend at some
point, are already comfortable with deploying to heroku, etc.

To deploy our site to heroku, we'll need an account. We can get one by
visiting https://signup.heroku.com/ (https://signup.heroku.com/) to sign up
for one.

We'll also need the heroku toolbet
(https://devcenter.heroku.com/articles/heroku-command-line) as we'll be
using the heroku command-line tool.

Finally, we'll need to run heroku login to set up credentials for our
application:

heroku login

Next, we'll need to tell the heroku command-line that we have a heroku app.
We can do this by calling heroku apps:create from the command-line in our
project root:

285

https://www.heroku.com/
https://signup.heroku.com/
https://devcenter.heroku.com/articles/heroku-command-line

heroku apps:create

or with a name

heroku apps:create thirty-days-of-react-demo

Heroku knows how to run our application thanks to buildpacks
(https://devcenter.heroku.com/articles/buildpacks). We'll need to tell
heroku we have a static-file buildpack so it knows to serve our application as
a static file/spa.

We'll need to install the static-files plugin for heroku. This can be easiy install
using the heroku tool:

heroku plugins:install heroku-cli-static

286

https://devcenter.heroku.com/articles/buildpacks

We can add the static file buildpack with the following command:

heroku buildpacks:set https://github.com/hone/heroku-buildpack-static

(https://github.com/hone/heroku-buildpack-static)

For any configuration updates, we'll need to run the static:init command
from heroku to generate the necessary static.json file:

heroku static:init

287

https://github.com/hone/heroku-buildpack-static

Now we can deploy our static site to heroku using the git workflow:

git push heroku master

or from a branch, such as the heroku branch

git push heroku heroku:master

We've deployed to only three of the hosting providers from the list above.
There are many more options for deploying our application, however this is a
pretty good start.

When we deploy our application, we will want to make sure everything is
working before we actually send out the application to the world. Tomorrow
we'll work on integrating a Continuous integration (CI, for short) server to
run our tests before we deploy.

288

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-29/post.md)

Continuous Integration

Today we'll look through some continuous integration solutions
available for us to run tests against as well as implement one to
test our application in the cloud.

We've deployed our application to the "cloud", now we want to make sure
everything runs as we expect it. We've started a test suite, but now we want
to make sure it passes completely before we deploy.

We could set a step-by-step procedure for a developer to follow to make sure
we run our tests before we deploy manually, but sometimes this can get in
the way of deployment, especially under high-pressure deadlines in the
middle of the night. There are better methods.

The core idea is that we want to deploy our application only after all of our
tests have run and passed (sometimes known as "going green"). There are
many ways we can do this. Mentioned above, we can handle it through
humans, but that can become tedious and we're pretty good at forgetting
things... what was I saying again?

Let's look at some better ways. One of the ways we can handle it is through a
deployment script that only succeeds if all of our tests pass. This is the
easiest, but needs to be replicated across a team of developers.

Testing then deployment

289

https://github.com/fullstackreact/30-days-of-react/blob/master/day-29/post.md

Another method is to push our code to a continuous integration server
whose only responsibility is to run our tests and deploy our application if and
only if the tests pass.

Just like hosting services, we have many options for running continuous
integration servers. The following is a short list of some of the popular CI
servers available:

travis ci (https://travis-ci.org/)
circle ci (https://circleci.com)
codeship (https://codeship.io)
jenkins (https://jenkins.io)
AWS EC2 (https://aws.amazon.com/ec2/)

Let's look at a few ways of handling this process.

Without involving any extra servers, we can write a script to execute our
tests before we deploy.

Let's create a script that actually does do the deployment process first. In our
case, let's take the surge.sh example from yesterday. Let's add one more
script we'll call deploy.sh in our scripts/ directory:

touch scripts/deploy.sh

chmod u+x scripts/deploy.sh

In here, let's add the surge deploy script (changing the names to your domain
name, of course):

#!/usr/bin/env bash

surge -p build --domain hateful-impulse.surge.sh

Let's write the release script next. To execute it, let's add the script to the
package.json scripts object:

Custom build script

290

https://travis-ci.org/
https://circleci.com/
https://codeship.io/
https://jenkins.io/
https://aws.amazon.com/ec2/

{

 // ...

 "scripts": {

 "start": "node ./scripts/start.js",

 "build": "node ./scripts/build.js",

 "release": "node ./scripts/release.js",

 "test": "node ./scripts/test.js"

 },

}

Now let's create the scripts/release.js file. From the root directory in our
terminal, let's execute the following command:

touch scripts/release.js

Inside this file, we'll want to run a few command-line scripts, first our build
step, then we'll want to run our tests, and finally we'll run the deploy script, if
everything else succeeds first.

In a node file, we'll first set the NODE_ENV to be test for our build tooling.
We'll also include a script to run a command from the command-line from
within the node script and store all the output to an array.

291

process.env.NODE_ENV = "test";

process.env.CI = true;

var chalk = require("chalk");

const exec = require("child_process").exec;

var output = [];

function runCmd(cmd) {

 return new Promise((resolve, reject) => {

 const testProcess = exec(cmd, { stdio: [0, 1, 2] });

 testProcess.stdout.on("data", msg => output.push(msg));

 testProcess.stderr.on("data", msg => output.push(msg));

 testProcess.on("close", code => (code === 0 ? resolve() :

reject()));

 });

}

When called, the runCmd() function will return a promise that is resolved
when the command exits successfully and will reject if there is an error.

Our release script will need to be able to do the following tasks:

1. build
2. test
3. deploy
4. report any errors

Mentally, we can think of this pipeline as:

build()

 .then(runTests)

 .then(deploy)

 .catch(error);

Let's build these functions which will use our runCmd function we wrote
earlier:

292

function build() {

 console.log(chalk.cyan("Building app"));

 return runCmd("npm run build");

}

function runTests() {

 console.log(chalk.cyan("Running tests..."));

 return runCmd("npm test");

}

function deploy() {

 console.log(chalk.green("Deploying..."));

 return runCmd(`sh -c "${__dirname}/deploy.sh"`);

}

function error() {

 console.log(chalk.red("There was an error"));

 output.forEach(msg => process.stdout.write(msg));

}

build()

 .then(runTests)

 .then(deploy)

 .catch(error);

With our scripts/release.js file complete, let's execute our npm run
release command to make sure it deploys:

npm run release

With all our tests passing, our updated application will be deployed
successfully!

293

If any of our tests fail, we'll get all the output of our command, including the
failure errors. Let's update one of our tests to make them fail purposefully to
test the script.

I'll update the src/components/Nav/__tests__/Navbar-test.js file to change

the first test to fail:

// ...

it("wraps content in a div with .navbar class", () => {

 wrapper = shallow(<Navbar />);

 expect(wrapper.find(".navbars").length).toEqual(1);

});

Let's rerun the release script and watch it fail and not run the deploy script:

npm run release

294

As we see, we'll get the output of the failing test in our logs, so we can fix the
bug and then rerelease our application again by running the npm run release
script again.

Travis ci (https://travis-ci.org/) is a hosted continuous integration
environment and is pretty easy to set up. Since we've pushed our container
to github, let's continue down this track and set up travis with our github
account.

Head to travis-ci.org (https://travis-ci.org/) and sign up there.

Travis CI

295

https://travis-ci.org/
https://travis-ci.org/

Once you're signed up, click on the + button and find your repository:

From the project screen, click on the big 'activate repo' button.

296

To allow Travis CI to automatically log in for us during deployment, we need
to add SURGE_LOGIN and SURGE_TOKEN environment variables. Open the More
Options menu and click settings.

Under environment variables, create a variable called SURGE_LOGIN and set it
to the email address you use with Surge. Next, add another variable called
SURGE_TOKEN and set it to your Surge token.

You can view your surge token by typing surge token in your
terminal. Since we're using surge for depolyment, we should
alsoadd it to our devDependencies in package.json . Run npm
install surge --save-dev to add it

Now we need to configure travis to do what we want, which is run our test
scripts and then deploy our app. To configure travis, we'll need to create a
.travis.yml file in the root of our app.

touch .travis.yml

297

Let's add the following content to set the language to node with the node
version of 10.15.0:

language: node_js

node_js:

 - "10.15.0"

Now all we need to do is add this file .travis.yml to git and push the repo
changes to github.

git add .travis.yml

git commit -am "Added travis-ci configuration file"

git push github master

That's it. Now travis will execute our tests based on the default script of npm
test .

Now, we'll want travis to actually deploy our app for us. Since we already have
a scripts/deploy.sh script that will deploy our app, we can use this to
deploy from travis.

298

To tell travis to run our deploy.sh script after we deploy, we will need to add
the deploy key to our .travis.yml file. We also need to build our app before
deploy, hence the before_deploy . Let's update the yml config to tell it to run
our deploy script:

language: node_js

node_js:

 - "10.15.0"

before_deploy:

 - npm run build

deploy:

 provider: script

 skip_cleanup: true

 script: sh scripts/deploy.sh

 on:

 branch: master

The next time we push, travis will take over and push up to surge (or
wherever the scripts/deploy.sh scripts will tell it to deploy).

Particulars for authentication. To deploy to github pages, we'll need to add a
token to the script. The gist at
https://gist.github.com/domenic/ec8b0fc8ab45f39403dd
(https://gist.github.com/domenic/ec8b0fc8ab45f39403dd) is a great
resource to follow for deploying to github pages.

There are a lot of other options we have to run our tests before we deploy.
This is just a getting started guide to get our application up.

Other methods

299

https://gist.github.com/domenic/ec8b0fc8ab45f39403dd

The Travis CI service is fantastic for open-source projects,
however to use it in a private project, we'll need to create a
billable account.

An open-source CI service called Jenkins (https://jenkins.io) which can
take a bit of work to setup (although it's getting a lot easier
(https://jenkins.io/projects/blueocean/)).

Congrats! We have our application up and running, complete with testing and
all.

See you tomorrow for our last day!

300

https://jenkins.io/
https://jenkins.io/projects/blueocean/

Edit this page on Github (https://github.com/fullstackreact/30-days-of-react/blob/master/day-30/post.md)

Wrap-up and More Resources

We've made it! Day 30. Congrats! Now you have enough
information to write some very complex applications, integrated
with data, styled to perfection, tested and deployed.

Welcome to the final day! Congrats! You've made it!

The final component of our trip through React-land is a call to get involved.
The React community is active, growing, and friendly.

Check out the community projects on Github at: https://github.com/reactjs
(https://github.com/reactjs)

We've covered a lot of material in the past 30 days. The high-level topics we
discussed in our first 30 days:

1. JSX and what it is, from the ground up.
2. Building components a. Static b. Data-driven components c. Stateful and

stateless components d. Pure components e. The inherent tree-based
structure of the virtual DOM

3. The React component lifecycle
4. How to build reusable and self-documenting components
5. How to make our components stylish using native React proptypes as

well as third party libraries
6. Adding interaction to our components
7. How to use create-react-app to bootstrap our apps
8. How to integrate data from an API server, including a look at promises

301

https://github.com/fullstackreact/30-days-of-react/blob/master/day-30/post.md
https://github.com/reactjs

9. We worked through the Flux architecture
10. Integrated Redux in our application, including how middleware works
11. We integrated testing strategies in our app a. Unit testing b. End-to-end

testing c. Functional testing
12. We discussed deployment and extending our application to support

multi-environment deployments
13. We added continuous integration in our deployment chain.
14. Client-side routing

Although we covered a lot of topics in our first 30 days, there is so much
more! How do we know? We wrote a book (https://www.fullstackreact.com)!

Interested in reading more and going deeper with React? Definitely check it
out. Not only do we cover in-depth the topics we briefly introduced in our
first 30 days, we go into a ton of other content, including (but not limited to):

Using graphql and how to build a GraphQL server
Relay and React
How to use React to build a React Native application
How to extend React Native to use our own custom modules
An in-depth, much more comprehensive review of testing, from unit
tests through view tests
A deep look into components, from an internals perspective
Advanced routing and dealing with production routing
Forms forms forms! We cover form validations, from basic form inputs
through validating and integrating with Redux
And much much much more.

Just check out the book page at www.fullstackreact.com
(https://www.fullstackreact.com) for more details.

Congrats on making it to day 30! Time to celebrate!

There is so much more!

302

https://www.fullstackreact.com/
https://www.fullstackreact.com/

303

